Please, send me references and links to anything related to Tensor Computer Algebra.
Other packages in tensor calculus
$: Commercial,
A: Abstract calculus,
C: Component calculus.
- For Wolfram Language & Mathematica:
- MathTensor (AC$)
- L. Parker and S.M. Christensen, MathTensor, a system for doing tensor analysis by computer, Addison-Wesley, Reading, MA 1994.
- Post on the motivation and development of MathTensor.
- Indicial Tensor Package Using Notebook Interface
- Tensors in Physics, Cartan (C$)
- Tensorial ($), with an older free version Tensorial 3.0.
- MathSymbolica (AC$)
- Ricci [Lee] (AC)
- Tools of Tensor Calculus (AC)
- MathGR (AC). Contact the author to get the code.
- Yi Wang, MathGR: a tensor and GR computation package to keep it simple, arxiv:1306.1295
- EinS (A)
- S.A. Klioner, EinS: a Mathematica package for computations with indexed objects, gr-qc/0011012.
- GRTensorM (C)
- RGTC (C)
- Tetrad, Ricci [Aguirregabiria] (C)
- diffgeo (C)
- grassmann (C)
- Tensors (C)
- AVF (C)
- Atlas2 Community (C$)
- TensorTools in Kranc
- CCGRG (C)
- VEST: abstract vector calculus simplification in Mathematica
- OGRe: An Object-Oriented General Relativity Package for Mathematica
- SimpleTensor -- a user-friendly Mathematica package for elementary tensor and differential-geometric calculations
- Gravitas: Computational General Relativity in the Wolfram Language:
- MathTensor (AC$)
- For Maple:
- DifferentialGeometry, built-in (C)
- Vector, built-in (C)
- GRTensorII (C)
- Atlas (C$)
- Riemann (C),
Riegeom (A),
Canon (A):
- R. Portugal and S. Sautú, Applications of Maple to general relativity, Comp. Phys. Commun. 105 (1997) 233-253.
- R. Portugal, The Riegeom package: abstract tensor calculation, Comp. Phys. Commun. 126 (2000) 261-268.
- L.R.U. Manssur and R. Portugal, Comp. Phys. Commun. 157 (2004) 173-180.
- NP, NPSpinor, NPTools:
- S.R. Czapor and R.G. McLenaghan, Gen. Rel. Grav. 19 (1987) 623.
- S.R. Czapor, R.G. McLenaghan and J. Carminati, Gen. Rel. Grav. 24 (1992) 911.
- S. Cyganowski and J. Carminati, Comp. Phys. Commun. 115 (1998) 200-214.
- GHP, GHPII:
- J. Carminati and K.T. Vu, GHP: A Maple Package for Perfoming Calculations in the Geroch-Held-Penrose Formalism, Gen. Rel. Grav. 33 (2001) 295.
- K.T. Vu and J. Carminati, The GHP II Package with Applications, Gen. Rel. Grav. 35 (2003) 263.
- For Reduce:
- For R:
- For Maxima (the
successor of Macsyma and its tensor packages):
- itensor (A)
- ctensor (C)
- atensor (algebras)
- V. Toth, Tensor manipulation in GPL Maxima, arXiv:cs/0503073.
- Sheep and derivates:
- Two relevant documents:
- M.A.H. MacCallum, Standard Sheep Letter (1994).
- J. Skea, Lecture Notes on Sheep (1994).
- The On-Line Invariant Classification Database
- For Sage:
- SageManifolds (C)
- In sympy:
- diffgeom (C)
- Standalone
- See also Tela, the Tensor Language.
Reviews on Tensor Computer Algebra
- M.A.H. MacCallum, in Proc. 4th Canadian Conference on General Relativity and Relativistic Astrophysics, G. Kunstatter, D.E. Vincent, J.G. Williams eds. (World Scientific, Singapore 1992).
- D. Hartley, in Relativity and scientific computing. Computer algebra, numerics, visualization, ed. F.W. Hehl, R.A. Puntigam and H. Ruder (Springer, Berlin 1996).
- M.A.H. MacCallum, Computer algebra and applications in relativity and gravity, in Recent Developments in Gravitation and Mathematical Physics: Proceedings of the First Mexican School on Gravitation and Mathematical Physics, ed. A. Macias, T. Matos, O. Obregon and H. Quevedo (World Scientific, Singapore 1996), pp. 3-41.
- gr-qc/9804068: J. Socorro, A. Macias, F. W. Hehl, Computer algebra in gravity: Programs for (non-)Riemannian spacetimes. I.
- gr-qc/0105094: C. Heinicke, F. W. Hehl, Computer algebra in gravity.
- M.A.H. MacCallum, Computer Algebra in General Relativity, Int. J. Mod. Phys. A 17 (2002) 2707-2710.
- gr-qc/0301076: S. Husa, C. Lechner, Computer algebra applications for Numerical Relativity.
- M.A.H. MacCallum, Computer algebra in gravity research, Living Reviews in Relativity 21, 6 (2018)
Tensor canonicalization
- R. Portugal, Algorithmic simplification of tensor expressions, J. Phys. A 32 (1999) 7779-7789.
- gr-qc/9803023: R. Portugal, An algorithm to simplify tensor expressions, Comp. Phys. Commun. 115 (1998) 215-230.
- math-ph/0107031: R. Portugal, B. F. Svaiter, Group-theoretic Approach for Symbolic Tensor Manipulation: I. Free Indices.
- math-ph/0107032: L. R. U. Manssur, R. Portugal, Group-theoretic Approach for Symbolic Tensor Manipulation: II. Dummy Indices.
- gr-qc/9809022: A. Balfagon, X. Jaen, Simplifying Tensor Polynomials with Indices.
- gr-qc/9912062: X. Jaen, A. Balfagon, Nondimensional Simplification of Tensor Polynomials with Indices.
- arXiv:0803.0862 [cs.SC]: J. M. Martín-García, xPerm: fast index canonicalization for tensor computer algebra.
- arXiv:1702.08114 [cs.CS]: B. E. Niehoff, Faster Tensor Canonicalization.
- arXiv:2208.11946 [cs.CS]: D. Price, K. Peeters, M. Zamaklar, Hiding canonicalisation in tensor computer algebra.
Computational group theory
- G. Butler, Fundamental Algorithms for Permutation Groups, Springer-Verlag, Berlin Heidelberg 1991.
- G. Butler, On Computing Double Coset Representatives in Permutation Groups, in Computational Group Theory, ed. M. D. Atkinson, Academic Press (1984), 283--290.
- Schur, by Brian G. Wybourne.