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This the Reference Guide of the package xTensor‘ , now in version 0.9.5. It is a quick recollection of all commands in
the package, with their mutual relations and links to individual help pages. There are no examples: see the notebook
xTensorDoc.nb  for an introduction to the system. There are no formulas: see the LATEX document xTensorMaths
for the mathematics underlying the system.

Please report  errors, omissions, suggestions or comments to the author. Any kind of help is welcome!

0. Loading
The package xTensor‘  is installed under the directory xAct/ containing all xAct‘  packages. This directory can be
installed anywhere and loaded into Mathematica giving the full path of installation. However, there are two recom−
mended places for installation of add−ons in Mathematica:

− For a single−user installation use:
− Linux:    $HOME/.Mathematica/Applications/
− Windows:    C:\Documents and Settings\USER\Program Data\Mathematica\Applications\
− Mac:    /Users/USER/Library/Mathematica/Applications/

− For a system−wide installation use:
− Linux:    /usr/share/Mathematica/Applications/
− Windows:    C:\Documents and Settings\All Users\Program Data\Mathematica\Applications\
− Mac:    /Library/Mathematica/Applications/

Using one of these directories there is no need to configure any path.

The loaded version of xTensor‘  is contained in the global variable $Version . xTensor‘  itself loads the package
xPerm‘  of manipulations of large groups of permutations. The minimum version of xPerm‘  required is given by the
variable $xPermVersionExpected . The loaded version of xPerm‘  is given by xPerm‘$Version .

If there are error messages during the loading of xTensor‘ , it is possible to locate the origin of the error by setting
$ReadingVerbose=True  before reading the package. By default that variable is not set.

xTensor‘  is free software. It is copyrighted by the author (JMM) under the General Public License (see the file gpl.txt
that you should have received along with this file, and in particular the ouptut of Disclaimer[] ).
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1. Symbols and types

� 1.1. Type information: symbols

There are three primitive types of values in Mathematica: symbols (head Symbol ), strings (head String ) and num−
bers (heads Integer , Rational , Real  and Complex ). Unfortunatlely it is not possible to define new primitive
types. Tensors and other types of values must be composite types. What follows in this section refers to tensors, but can
also be applied to other xTensor‘  types of values, to be listed below.

Information in Mathematica is associated to symbols only (not to strings, numbers or composite expressions as a whole).
In xTensor‘  we take the following important decision: information on a tensor will be associated to a symbol identify−
ing that tensor. This has two important consequences:

− Tensors are identified using symbols, and not strings.
− We cannot have two different tensors identified by the same symbol, to avoid conflicting information.

This decision has also two important advantages:
− Information on a tensor is only used by Mathematica when the tensor appears in the expression being evalu−

ated.
− At any time we can collect all the information known about a tensor, using Information  (the ? command).

There is a harsh limitation in Mathematica: an expression can be associated to a symbol if and only if the symbol is
present in the expression at levels 0 or 1, but no deeper. This leads us to introduce a second important decision: symbols
with some  xTensor‘  type will always appear in the composite expression at level 0; in other words, the symbol
identifying a tensor will be the head of the tensor, and so on: we shall use A[...] rather than, for example, the more
natural notation Tensor[A][...] suggested by Maeder.

It could seem reasonable to use contexts to separate Tensor‘A from Manifold‘A or Index‘A. This simply means using
longer names for the objects defined. We could use as well TensorA, ManifoldA, IndexA, or perhaps TenA, ManiA,
IndA. In xTensor‘  we do not force any particular solution, leaving the decision to the user. The only general recom−
mendation is using long names for tensors (like MaxwellF for the electromagnetic Faraday tensor) and short names (a, b,
C, etc.) for abstract indices.

It could also seem reasonable to define tensors as abstract types, instead of fixing a particular structure from the very
beginning. However, this would be slow for pattern matching. We shall simply try to write code having the abstract
model in mind.
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� 1.2. Valid symbols. Attributes

Copied from the Mathematica Reference Guide (A.1.2): The name of a symbol must be a sequence of letters, letter−like
forms and digits, not starting with a digit. xTensor‘  adds a few more restrictions on the symbols that can be used to
identify tensors and so on. These restrictions are checked by the xCore function ValidateSymbol ,  called by all
DefType  commands:

1. The symbol is not numeric (checked with NumericQ ).
2. The symbol does not have values (checked with ValueQ ).
3. The symbol does not have a Locked  attribute.
4. The symbol is not already used by xTensor‘ , xPerm‘ , xCore‘  or ExpressionManipulation‘ .
5. The symbol is not protected, readprotected or used by Mathematica.

There is an exception to restriction 5: the capitals C, D, K, N, O are used by Mathematica but are accepted as valid
symbols for indices and overloaded (that is, without changing their context), issuing a warning message. The capitals E
and I are numeric and cannot be used.

Once a symbol is used to identify an object, it cannot be used to identify another object. We use the function Validate−
SymbolInSession  to check whether a symbol is currently being used or not. This function is called by all DefType
commands.

All DefType  commands have the option ProtectNewSymbol , whose default value is given by the global variable
$ProtectNewSymbols  (initialized to  False ), which allows the user to protect the defined symbol right after all its
properties have been assigned. This is a security feature, and, if used, then any protected symbol must be unprotected
(with Mathematica’s Unprotect ) before new definitions can be associated to it.
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� 1.3. Type managing

As we said, xTensor‘  implements its own way to deal with symbol types. It is certainly nor ellegant nor efficient, but
it is the only way to use upvalues and keep a simple input, at the expense of harder patterns. Currently there are the
following 12 symbol types (the mathematical meaning of each type will be explained in detail in the following sections):

Symbol Type Q- function Global list Definition Meaning
ConstantSymbol ConstantSymbolQ $ConstantSymbols DefConstantSymbol Constant with respect

Parameter ParameterQ $Parameters DefParameter Parametric dependency
Manifold ManifoldQ $Manifolds DefManifold Smooth n- dim
VBundle VBundleQ $VBundles DefVBundle Vector bundle

AbstractIndex AbstractIndexQ $AbstractIndices DefAbstractIndex Index associated
Tensor xTensorQ $Tensors DefTensor Tensor field on

CovD CovDQ $CovDs DefCovD Connection on
Metric MetricQ $Metrics DefMetric Metric tensor

InertHead InertHeadQ $InertHeads DefInertHead Wrapper for
ScalarFunction ScalarFunctionQ $ScalarFunctions DefScalarFunction Scalar function

Basis BasisQ $Bases DefBasis Frame of vector
Chart ChartQ $Charts DefChart Coordinate chart

Each type has an associated Q−function to identify the symbol type: each user−defined symbol has an upvalue True  for
the corresponding Q−function, giving False  on the other Q−functions. The name of the Q−function is always con−
structed appending Q to the type name (note the exception of xTensorQ , to avoid conflict with Mathematica’s Ten−
sorQ ). The list of symbols of each type is contained in a global variable whose name is constructed using a $ and the
plural of the symbol type (note that the plural of Index is Indices, and the plural of Basis is Bases). Objects of the
corresponding type are defined (undefined) using DefType  (UndefType ) commands, where Type  must be replaced
by the corresponding symbol type. The option Info  allows us to store some information on the type and nature of the
defined symbol. The function Undef  can undefine any symbol.

Bases and charts are defined and dealt with in the companion package xCoba‘ . In particular the functions DefBasis
and DefChart  are defined in there. However the type management is done by xTensor‘ .

Given an expression, we can find all instances of a given type using the function FindAllOfType .

� 1.4. Relations among symbols

There are mathematical objects that can only be defined if other objects have already been defined before. For example
defining a scalar field T requires the previously defined manifold M where it lives. We shall say the symbol T is a
"visitor" of the symbol M, which itself will be called a "host" of T. The lists of visitors associated to a symbol is given
by the functions VisitorsOf  and HostsOf . A symbol can only be removed when the list of its visitors is empty.

Some objects are automatically defined. For example the tangent bundle of a manifold is automatically defined when the
manifold is defined. We say that the tangent bundle is a "servant" of the manifold, and that the manifold is the "master"
of the tangent bundle. The list of servants associated to a symbol is given by the function ServantsOf . The master of
a symbol is given by the function MasterOf . The master of a symbol is specified at definition time using the option
Master  of the DefType  commands.

Visitors of a symbol frequently have that symbol in their own name. For instance, the Riemann  tensor of the covariant
derivative CD is called by default RiemannCD. This is controlled through the function GiveSymbol , which in that
example would be called as GiveSymbol [Riemann , CD], and has explicit instructions on how to proceed in each
case.
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2. Generalized indices

� 2.1. Introduction
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The main objective of xTensor‘  is the manipulation of indexed objects. From the mathematical point of view we shall
always use the notation of abstract indices for abstract expressions (see Penrose & Rindler, or Wald), where the indices
denote the type and symmetries of a tensor, and not its components in a given frame (we use a different type of indices
for components). This notation is very general and powerful, though sometimes cumbersome. From the computational
point of view, however, we need a more general concept of index, with several properties:

1) We define the concept of generalized index as any expression found at an index−slot. Currently index−slots are those
with lower case letters in

tensor[a,b,c]
covd[a][...]
Bracket [a][..., ...]

and the indexed arguments of the inert−heads, to be explained later, but nothing else. At those index−slots we can put
anything, but the system has been already trained to manipulate five types of expressions, which we now review in
detail. This is called the index type (these are logic types, not actual symbol types):

− AIndex : abstract indices: a, −b, d$101
− BIndex : basis indices: {a, polar}, {−b, −polar}
− CIndex : component indices: {0, polar}, {2, −polar}
− DIndex : directions: Dir [vector]
− LIndex : labels: LI [hello]

They all give True  when the function GIndexQ  is applied, and False  otherwise. There is a sixth type of index, not
accepted by GIndexQ :

− PIndex : patterns with head Blank , Pattern  or PatternTest , but no other pattern head
It is possible to introduce new index types but then you would need to specify which values they have for the following
index properties (contact JMM to discuss why a new type of index is required):

2) All indices have a character, which can be Down (covariant) or Up (contravariant). Nameless patterns like _ or a_
do not have a well−defined character. However, by convention,  they are treated by the formatting routines as if they
were contravariant. The character can be detected with the functions UpIndexQ  and DownIndexQ . They both always
give False  on all patterns. Any index can be made contravariant using the function UpIndex  and covariant using
DownIndex . The character of any index can be reversed using ChangeIndex .

3) Contractible indices are those which obey the Einstein convention and are detected by the function EIndexQ . Actual
pairs of indices are detected with PairQ . Currently only abstract indices and basis indices belong to this special type
(though in the future we might consider having non−contracted basis indices). They have a state, which can be Free  or
Dummy (aka contracted).  Non−contractible indices are said to  have state Blocked  and can be detected with the
function BlockedQ , which always gives opposite answers to EIndexQ .

4) Apart from those three ‘public´ properties (type, character and state), xTensor‘  uses a fourth property internally:
the metric−state of an index, saying whether an index has been moved with a metric with respect to the character of the
corresponding slot at definition time.

5) To avoid index collisions we use the (Mathematica recommended) method of unique variables, having indices like
a$123. This is useful but produces ugly expressions. To hide away those "dollar−indices" use the function ScreenDol−
larIndices , either explicitly or by setting $PrePrint  or $Post .

6) Finally, we shall distinguish between indices on a complex vbundle and "conjugated indices" on the complex conju−
gated vbundle.

As a general recommendation, manipulation of indices must be done using mathematical commands to do that, and not
tinkering directly with the indices.
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� 2.2. Abstract indices

Abstract indices are labels that indicate tensorial slots (i. e. contraction with vectors or covectors). In principle we should
have  indices  a,  b,  c,  ...,  contravariant  indices  Up[a],  Up[b],  Up[c],  ...,  and  covariant  indices  Down[a],  Down[b],
Down[c], ... To simplify the input/output of tensors we represent both indices and contravariant indices as a, b, c, ... and
covariant indices as −a, −b, −c, ... This is the simplest choice, but the treatment of patterns becomes harder because we
loose the symmetry between upindices and downindices (the former being atoms and the latter being composite expres−
sions).

The symbol type associated to abstract indices is AbstractIndex . (This is a *symbol type* and therefore an expres−
sion like −a cannot have this  symbol type. See below.) The list of all currently defined abstract indices is given by the
global variable $AbstractIndices . All of them have associated upvalues True  for the function AbstractIn−
dexQ. Abstract indices are defined using the function DefAbstractIndex  and undefined using UndefAbstract−
Index . Defining an abstract index just involves checking the validity of the symbol and registering the corresponding
upvalue for the Q−function. This should never be done directly by the user. These functions are made public only for
consistency of the symbol type management.

Do not confuse the function AbstractIndexQ , which gives True  only on symbols defined as abstract indices (like
a, b, ...), and the function AIndexQ , which gives True  on all abstract indices(a, −b, a$125, ...).

We may consider in the future to allow for more general (composite) abstract indices, but currently this is not possible.

In xTensor‘  abstract indices are always associated to vector bundles through the function VBundleOfIndex , which
is  sort  of  inverse of  IndicesOfVBundle .  The association to  manifolds is  implicit  through their  tangent  vector
bundles.

A simple way to generate a list of abstract indices is provided by the function IndexRange .

� 2.3. Basis indices and component indices

Almost everything related to  bases and components is  done by the twin package xCoba‘ .  However,  the internal
manipulation of basis indices is already prepared in advance in xTensor‘ , to avoid a slow process of overloading of
functions when loading xCoba‘ . Following Schouten, Dodson & Poston, and Penrose & Rindler, basis−indices contain
the information of the basis they belong to. This is called the marked index notation. That avoids defining different
indices for different bases, but makes basis−indices a bit cumbersome: {a, basis} where a is an abstract index. There is
no type associated to basis−indices because they are always composite structures.

The function BIndexQ  checks whether a given expression is a valid basis−index. It has a second argument to check
whether the basis index belongs to a given basis or to a given vbundle.

Component indices are defined in parallel with basis indices {a, basis} but a is now an integer, one of those c−numbers
("c" from component and coordinate; no intended connection with Quantum Mechanics) defined with the basis. The
function CIndexQ  checks whether a given expression is a valid component−index. It also has a second argument to
check whether the component index belongs to a given basis or to a given vbundle. The index {1, basis} is contravariant
and the index {1, −basis} is covariant. The integer number can be positive, negative or zero because the character is
stored as the sign of the basis, and not of the integer itself. Beware that this was different in pre−0.8 versions of xTen−
sor‘ .

The function BCIndexQ  checks whether an index is a basis−index or a component−index. The function ABIndexQ
checks whether an index is an abstract−index or a basis−index, currently the only two types of  indices which are
contractible.
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� 2.4. Directional indices

Directional indices represent  the mathematical notation that  sees tensorial  slots as slots for  vectors and covectors.
Because it is seldom used, we want to avoid xTensor‘  checking continuosly if a given index is directional. Hence we
introduce the head Dir  to pinpoint the directional indices.

The vector argument of a directional index has its own index, which is not an index of the whole expression. The index
must belong to the correct vector bundle, but the name of the index itself is irrelevant; it is some kind of dummy index;
we call it an ultraindex.

The function DIndexQ  checks whether a given expression is a valid directional−index. Vectors can be contracted to
Dir  expressions using ContractDir  and separated using SeparateDir .

� 2.5. Label indices

There are indices which are not associated to vector bundles. We call them labels or label−indices. An example could
be the l, m labels of the spherical harmonics. Because they are used only every now and then, we denote them with a
special head: LI . An LI  expression can have any internal structure; in particular they can have several elements. It is
possible to associate a character for them using LI [a] and −LI [a] (LI [−a] is not interpreted as a "covariant label") but
they are defined as not obeying the Einstein convention (blocked indices).

The function LIndexQ  checks whether a given expression is a valid label−index.

� 2.6. Patterns

At index−slots we can also find patterns for g−indices (even patterns for patterns). Not all patterns are allowed: only
those with head Blank , Pattern  or PatternTest . The function PIndexQ  validates the allowed patterns. The
function PatternIndex  constructs patterns of the required form.

For a description of the patterns to be used in rules, see Section 6 below.
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� 2.7. Finding indices

All indices of an expression, including patterns, can be extracted using the function FindIndices . This function has
attribute HoldFirst  to allow it getting the indices of input expressions, before they start to evaluate. FindIndices
always returns a list of indices with head IndexList , to avoid confusion with the notation for basis and component
indices. FindIndices[0]  returns IndexList[AnyIndices] .  FindIndices  works recursively, checking the
heads of the elements of expressions, and complaining when it finds an unknown head. New "known" heads can be
added to the list $FindIndicesAcceptedHeads .

When searching for the indices of a tensor, covariant derivative of a tensor or a tensor product we check that none of the
indices are repeated with the internal function CheckRepeated . When searching for the indices of a sum of tensor
expressions, or a list, equation or rule of them, we check homogeneity of free indices with the internal function Check−
Homogeneity .

Three related functions,  based on FindIndices ,  are  FindFreeIndices ,  FindDummyIndices  and Find−
BlockedIndices . They give disjoint lists of indices. The second one returns only the up−member of the pairs of
dummies.

A very friendly driver for FindIndices  is IndicesOf . The general syntax is IndicesOf [selectors][expr], where
selectors are one or several of the following:

− Free : free indices
− Dummy: dummy indices
− Blocked : blocked indices
− Up: contravariant indices
− Down: covariant indices
− AIndex : abstract indices
− BIndex : basis indices
− CIndex : component indices
− DIndex : directional indices
− LIndex : label indices:
− vbundle: indices of the given vbundle
− basis: indices of the given basis
− tensor: indices on the given tensor
− covd: indices on the given covariant derivative
− Basis [basis]: (both) indices on Basis  objects of the given basis
− Not [any of the previous]: complement of the previous

A sequence of several selectors represents the And of all selectors (smaller result). A list of several selectors represents
the Or  of all selectors (bigger result).

An alternative and completely independent way of looking for indices, very useful for recursive algorithms of index
contraction, is the function IsIndexOf .

� 2.8. Sorting indices

The canonicalization of an indexed object essentially entails to a reordering of the indices according to the symmetries
of the object and a predefined ordering for the indices. The function IndexSort  returns the preferred order for a list of
indices. With the function SetIndexSortPriorities  we can decide which particular order we want to have.
Possible  priorities  are  the  strings  "up"/"down" ,  "free"/"dummy" ,
"lexicographic"/"antilexicographic" , "positional"/"antipositional" .

Simple functions derived from IndexSort  are IndexOrderedQ  and DisorderedPairQ .
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� 2.9. Replacing indices

The basic function for index replacement in a generic expression is ReplaceIndex . Every valid index can be changed
by any other thing, not necessarily an index (though that would inmediately produce many errors). ReplaceIndex
has  attribute  HoldFirst .  The  syntax  is  ReplaceIndex [expr,  rules],  where  the  rules are  of  the  form index−
>newindex. The rule a−>b and −a−>−b are considered independent, and both must be specified if that is what we need.

Derived functions are:
− ReplaceDummies :  replacement of  all  dummies in an expression by indices in a given list,  or by new

dollar−indices. Indices belonging to different vbundles are not mixed up. In computations with intensive generation of
dollar−indices the memory of the computer could be filled after a while and the global variable $ComputeNewDum−
mies  has been introduced to avoid this. There is also a private function RemoveDollarIndices .

− SameDummies: returns an expression minimizing the number of different dummies used in different terms.
− PermuteIndices : replace indices in an expression as given by a permutation or a linear combination of

them.
− SplitIndex : returns a list of expressions where a given free index has been respectively replaced by each of

a list of indices. This is useful to expand component ranges or to expand sums of vbundles.
− TraceDummy: converts an expression with a dummy pair into a sum of expressions with different dummy

pairs. Log messages can be controlled with $TraceDummyVerbose .

3. Formatting of indexed objects
Formatting in versions 0.7and 0.8 was rather limited. Version 0.9 has introduced cut−and−paste,  but still no editing of
the tensor expressions. This section will be much expanded in future versions.

Most symbols in xTensor‘  can be formatted in StandardForm . The output form of a symbol is a string "<output>"
chosen at definition time using the option PrintAs , which defines an upvalue PrintAs[ symbol] ="<output>". The
value of the option can be directly the string "<output>" or a function which returns the string when applied on symbol.
Formatting of a type of objects (or of all allowed objects to be formatted) can be turned on/off using the functions
xTensorFormStart[ type]  / xTensorFormStop[ type] .

Those symbols automatically generated with GiveSymbol  have a parallel function to generate their output strings,
called GiveOutputString .
Indices are always formatted if a PrintAs  upvalue has been given for them. Note that the formatting of indices is not
given at definition time; it must be explicitly set as upvalues for PrintAs .

Basis and component indices are formatted using a color associated to the corresponding basis. Components are num−
bered, but for coordinate systems it is possible to use the name of the corresponding coordinate (CIndexForm , $CIn−
dexForm ).

Covariant derivatives and their indices can be formatted in StandardForm  in two possible ways, stored as values in
the global variable $CovDFormat : "Prefix"  and "Postfix" , with obvious meanings. The associated symbols to
be used in each of those cases are stored in SymbolOfCovD  for each covariant derivative.

4. Mathematical entities
Elementary mathematical objects in xTensor‘ .
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� 4.1. Constant−symbols

Symbols defined with type ConstantSymbol  represent constants with respect to all kinds of derivatives. In particu−
lar, they are given attribute Constant .

Constant−symbols are defined with DefConstantSymbol  and undefined with UndefConstantSymbol . Possible
options at definition time are Dagger  and those generic for all Def−commands: Info , Master , ProtectNewSym−
bol  and PrintAs .

The list of all currently defined constant−symbols is stored in the global variable $ConstantSymbols .

Any symbol defined as a constant−symbol is given a True  upvalue for the function ConstantSymbolQ , which is
defined as False  on any other input.

A constant−symbol is a particular kind of constant. A constant is either a constant−symbol, a numeric symbol or a
number. We use the function ConstantQ  to check that something is a constant. Do not confuse ConstantQ  and
ConstantSymbolQ . Replacing constant−symbols by constants is safe. For instance, there is no problem in using a
rule like Mass−>2 .

� 4.2. Parameters

Symbols defined with type Parameter  represent real parameters with some undefined range of values. Essentially
they will be used as dependencies of other objects (tensors, for instance), and we will be able to take parametric deriva−
tives of expressions (see ParamD below).

Parameters are defined with DefParameter  and undefined with UndefParameter . There are no particular options
at definition time, apart from those generic for all DefType  commands: Info , Master , ProtectNewSymbol  and
PrintAs .

We do not expect parameters to be master symbols (i.e. have servants). However they can have objects, those objects
which depend on the parameter. A parameter cannot be undefined if it has objects.

The list of all currently defined parameters is stored in the global variable $Parameters .

Any symbol defined as a parameter is given a True  upvalue for the function ParameterQ ,  which is defined as
False  on any other output.

The parameter dependencies of a generic expression expr are obtained applying ParametersOf  on expr. This is just a
call to DependenciesOf  on expr and then a selection (using Select  and ParameterQ ) of the parameters. Parame−
ter dependencies of a tensor are obtained, following a parallel path, using the private function ParametersOfTen−
sor . Note that the latter function expects a symbol (the tensor head), but the former expects a generic expression.
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� 4.3. Manifolds and vector bundles

� 4.3.1. Manifolds

A symbol manifold with type Manifold  represents a smooth, differentiable manifold of fixed dimension.

Manifolds  are  defined with  DefManifold  and  undefined with  UndefManifold .  The  syntax  for  definition of
manifold is
DefManifold[ manifold, dim, indices] , where:
 manifold is the symbol to be defined,
 dim is a nonnegative integer or a constant−symbol, and
 indices is the list of abstract indices associated to the tangent vbundle of manifold.
 
The list of all currently defined manifolds is stored in the global variable $Manifolds . All of them have associated
upvalues True  for the function ManifoldQ , which is defined as False  on any other input.
 
The dimensionality of the manifold is stored as an upvalue of manifold for the function DimOfManifold .  0−dim and
1−dim manifolds have not been fully implemented yet.

� 4.3.2. Product manifolds

Given several manifolds it is possible to define their "product−manifold" structure. This is done using again DefMani−
fold , but now the second argument is a list of the (previously defined) submanifolds. The list of submanifolds is stored
as an upvalue for the function SubmanifoldsOfManifold, and give True  when asked by SubmanifoldQ . The
list of all defined product−manifolds is stored in the global variable $ProductManifolds ,  which is a subset of
$Manifolds .

� 4.3.3. Dependencies

The manifold dependencies of a generic expression expr are obtained using applying ManifoldsOf  on expr. This is
just a call to DependenciesOf  on expr and then a selection (using Select  and ManifoldQ ) of the parameters.
Manifold dependencies of a tensor are obtained, following a parallel path, using the private function ManifoldsOf−
Tensor . Note that the latter function expects a symbol (the tensor head), but the former expects a generic expression.

Dependencies are specially relevant for derivatives, where it is always important to know whether a derivative on some
expression shares dependencies with that expression. This is computed via the function DisjointManifoldsQ .
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� 4.3.4. Vector bundles ("vbundles")

Each manifold has an associated vbundle (its tangent bundle) with the same dimension, whose name is formed by
joining the symbol Tangent  and the name of the manifold, and which is stored as an upvalue for the function Tan−
gentBundleOfManifold .

However, in xTensor‘  it is possible to define more general ("inner") vbundles, of the type that are used in gauge
theories. As usual in xTensor‘  we only worry about local properties, and therefore all our vbundles are considered
products of an inner vector space and the base manifold. This is a new type of symbol:

A symbol vbundle with type VBundle  represents a smooth vector bundle of fixed dimension.

Vbundles are defined with DefVBundle  and undefined with UndefVBundle . The syntax for definition of vbundle is
DefVBundle[ vbundle, manifold, dim, indices] , where:
 vbundle is the symbol to be defined,
 manifold is the base manifold of vbundle,
 dim is a nonnegative integer or a constant−symbol, the dimension of the vector space, and
 indices is the list of abstract indices associated to vbundle.
 
The list of all currently defined vbundles is stored in the global variable $VBundles . All of them have associated
upvalues True  for the function VBundleQ , which is defined as False  on any other input.
 
The dimensionality of the vbundle (that is, that of its vector space) is stored as an upvalue of vbundle for the function
DimOfVBundle .   0−dim and 1−dim vbundles have not been implemented yet. The base manifold is stored as an
upvalue of the vbundle for the function BaseOfVBundle .

� 4.3.5. Sum vbundles

Given several vbundles it is possible to define their "sum−vbundle" structure. This is done using again DefVBundle ,
but now the third argument is a list of the (previously defined) subvbundles. The list of subvbundles is stored as an
upvalue for the function SubvbundlesOfVBundle , and give True  when asked by SubvbundleQ . The list of all
defined sum−vbundles is stored in the global variable $SumVBundles , which is a subset of $VBundles .

Dummy pairs in a vbundle can be converted into sums of dummy pairs of its vbundles using the function TraceProd−
uctDummy (with infix notation CircleDot ).

� 4.3.6. Indices and vbundles

The list indices is stored as the first element of two in the list IndicesOfVBundle . The second element will be the
list of indices internally generated when the number of registered indices in not enough. See the function NewIn−
dexIn . Indices can be added to the first list (AddIndices ) or removed from it (RemoveIndices ), even though the
latter is very dangerous because previous expressions are likely to get corrupted if they contain removed indices. We can
get any number of abstract indices using the function GetIndicesOfVBundle . Unique (dollar−) dummy indices can
be generated using DummyIn. A list of respective dollar−indices on the subvbundles of a vbundle can be obtained with
SubdummiesIn .
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� 4.4. Tensors

� 4.4.1. Type

A symbol tensor with type Tensor  represents a smooth tensor field living on some manifold. If manifold is 0−dim,
then tensor is actually not a field but an algebraic object.

Tensors are defined with DefTensor  and undefined with UndefTensor .  The syntax for definition of  tensor is
DefTensor[ tensor[indices],  dependencies]  for  a  tensor  without  symmetries  and   DefTensor[ tensor[indices],
dependencies, symmetry]  in general, where:

indices is the a sequence of abstract indices denoting the type of tensor
dependencies is a list (or a single symbol) containing the manifolds tensor lives on, and/or parameters it depends

upon.
symmetry is a generating set or a strong generating set describing the symmetry properties of the tensor.

The list of all currently defined tensors is stored in the global variable $Tensors . All of them have associated upvalues
True  for the function xTensorQ , which is defined as False  on any other input. Note the difference between this
function and the Mathematica built−in TensorQ  (new in Mathematica 5.0).
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� 4.4.2. Properties and options

The slot structure of the tensor (SlotsOfTensor ) is stored as {−M1, M1, M2, ...} , such that the first slot is a
covariant index on manifold M1, the third slot is a contravariant index on M2, etc.

The list dependencies of manifolds and/or parameters is stored as an upvalue of tensor for the function Dependencies−
OfTensor . The order in the list is irrelevant because it is overwritten using the private function SortDependen−
cies , which sorts parameters before manifolds, and uses lexicographic order in both sets. If the tensor has no dependen−
cies then use {}. A tensor is always a tensor field on the manifolds corresponding to its indices; that is, we consider that
a nonscalar tensor cannot be a constant on a given manifold. This is because we need additional structure to show that a
tensor field does not depend on that manifold (for example a vector field, in order to take Lie derivatives). The list of
parameter  dependencies  can  be obtained with  the private function ParametersOfTensor ;  the  list  of  manifold
dependencies can be obtained with the private function ManifoldsOfTensor .

Using option WeightOfTensor  (default value 0) we can define tensorial densities, defined as a linear combination of
bases. The weight is stored as an upvalue of tensor for the function WeightOfTensor . Tensor densities are repre−
sented in output using Ashtekar’s notation: weight n positive (negative) is represented adding n tildes above (below) the
name of the tensor. The tildes are colored according to the bases they represent. The weight of a generic expression is
computed using WeightOf .

The symmetry description of the tensor is assumed to be a generating set (head GenSet ) or a strong generating set
(head StrongGenSet ) of the symmetry group of slot permutations. Simple cases can be constructed using the func−
tions  Symmetric ,  Antisymmetric  and  RiemannSymmetry .  The  information  is  always  stored  as  a  strong
generating  set  being  an  upvalue  of  tensor for  the  function  SymmetryGroupOfTensor .  Handling of  multiterm
symmetries through Young tableaux is under development, and will be stored using the function SymmetryTableaux−
OfTensor . Any perm notation can be used on input, but it will always be changed to Cycles  notation on numeric
slots. Different slots belonging to the same orbit of the symmetry group must have the same slot structure (same mani−
fold and same up/down character) at definition time, but this can be overwritten using the option ForceSymmetries
(default is False ).

Under complex conjugation (with Dagger ) tensors can behave in four different ways. They can be
− Real  (the default): the tensor is invariant under complex conjugation.
− Imaginary : the tensor changes sign under complex conjugation.
− Hermitian :  the tensor is invariant under simultaneous complex conjugation of indices and exchange of

indices between a vbundle and its conjugate.
− Complex : generic case.

This is given through the option Dagger  and stored as an upvalue of Dagger  for the tensor.

Apart  from the usual DefType  options (Info ,  Master ,  ProtectNewSymbol  and PrintAs ),  there are other
options:

 FrobeniusQ : not functional now
 OrthogonalTo : vectors to which the tensor is orthogonal
 ProjectedWith : projectors leaving the tensor invariant
 TensorID : information on how to compute components
 VanishingQ :  if a tensor vanishes, a delayed definition of the form tensor[___]:=0  is set.
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� 4.4.3. Special tensors

There are three heads with special tensorial meaning. Two of them are the delta  and the "generalized delta" Gdelta
tensors:

delta [a,  −b]  is  the identity tensor on the vbundle of  its indices. There is no difference between this object and
delta [−b, a] and actually delta  is defined as symmetric (though not orderless), even though its indices are always
staggered. If both its indices have the same character, then delta  is inmediately converted into the (first) metric tensor
of the vbundle of its indices. If one of its indices is a basis index then delta  is converted into Basis , which is for−
mally equivalent, but with the Orderless attribute.

Gdelta [a1,...,an, −b1,...,−bn] is the generalized delta tensor on any vector bundle. Its first half of indices is antisymmet−
ric, and so it is the second half, independently. The function ExpandGdelta  converts the Gdelta  tensor into a linear
combination of products of n delta ’s, as given by a determinant.

The other one has been created only for convenience: Zero  represents the 0 tensor, for any indices.

� 4.4.4. Name generation

There are a number of tensors which are automatically defined. They are associated to other objects (vbundles, bases,
connections,  etc.)  and  their  names  are  constructed  using  the  function  GiveSymbol ,  with  syntax  Give−
Symbol[ tensor, object] , where tensor is one of the following reserved words:

epsilon metric totally antisymmetric tensor covariantly constant with respect to the metric
Christoffel covd Christoffel symbol associated to the connection covd and the fiducial PD
AChristoffel covd internal Christoffel symbol associated to the connection covd
Torsion covd torsion tensor associated to the connection covd
Riemann covd curvature tensor associated to the connection covd
FRiemann covd internal curvature tensor associated to the connection covd
Ricci covd Ricci tensor associated to the connection covd
TFRicci metric−covd Trace−free Ricci tensor associated to the connection metric−covd
RicciScalar metric−covd Ricci scalar associated to the metric connection metric−covd
Einstein metric−covd Einstein tensor associated to the metric connection metric−covd
Weyl metric−covd Weyl tensor associated to the metric connection metric−covd
Projector induc−metric Projector tensor on a codimension−1 surface with induced metric induc−

metric
ExtrinsicK induc−metric Extrinsic  curvature  tensor  of  a  codimension−1  surface  with  induced

metric induc−metric
Acceleration vector Acceleration of vector

The symbol Christoffel  can be also associated to two different covds.
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� 4.5. Covariant derivatives

� 4.5.1. Internal format for covariant derivatives

The format for a covariant derivative is CD[−a][expr] . The double pair of brackets roughly follows Mathematica’s
structure  for  derivatives:  f’[x]  is  represented  as  Derivative[1][f][x] ,  separating  the  derivative  operator
Derivative[1]  from the object being differentiated. However we do not want to distinguish between the differentia−
tion operator (D)  and the internal representation for a derivative (Derivative ).  Nor we can separate the abstract
object being differentiated (f ) from the field variable or the indices (that would require a complete change of philosophy
in  xTensor‘ ).  All  this  means  that  higher  derivatives  must  be  stored  as  nested  derivatives:  CD[−a][CD[−
b][expr]] . This is natural with respect to the multiple possible derivative operators, but has several drawbacks:

1.  Many pairs of  brackets are needed. This is partially alleviated using the prefix notation CD[−a]@CD[−
b]@expr .

2. Even though CD[−a][T[−b]]  is a tensor, as well as T[−b] , the notations are very different. Every func−
tion acting on tensorial inputs must be prepared to receive a covariant derivative.

3. Rules for T[−a]  will be replaced in derivatives of T[−a] . This can be considered a drawback or an advan−
tage, depending on the case.

4. Because of the depth restriction in Mathematica, rules for second−or−higher derivatives of T[−a]  cannot be
upvalues for T.
This could be extended to other simpler formats in future versions if required by a large fractions of the users of xTensor.

� 4.5.2. Type

A symbol covd with type CovD represents a smooth connection or covariant derivative living on some manifold, and
acting on tensor fields with indices in some vbundle having that manifold as base.  If manifold is 0−dim then connections
are not allowed. Rather than working with a single derivative operator and Christoffel symbols for different derivatives,
we define different derivative operators for different connections, following Wald.

Covariant derivatives are defined with DefCovD  and undefined with UndefCovD . The syntax for definition of covd is
DefCovD [covd[−a], symbol] or  DefCovD [covd[−a], vbundle, symbol], where:

a is an index on a tangent vbundle which identifies the manifold where the covariant derivative lives.
symbol is a list containing two strings: the first / last one gives the "Postfix"  / "Prefix"  output in Standard−

Form.
vbundle is the vbundle on which the covariant derivative acts. If not given it is assumed to be the (tangent)

vbundle of the index a.

The list of all currently defined covariant derivatives is stored in the global variable $CovDs. All of them have associ−
ated upvalues True  for the function CovDQ, which is defined as False  on any other input. Do not confuse CovDQ
with FirstDerQ , to be explained below.
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� 4.5.2. Properties and options

The manifold on which the connection lives is stored as an upvalue for covd of the function  ManifoldOfCovD . It is
currently not possible in xTensor to define a parameter dependency for a connection. The list of vbundles on which the
connection acts is stored as an upvalue for covd of the function VBundlesOfCovD  (the first one is always the tangent
vbundle of that manifold). The symbol of covd is stored as an upvalue of SymbolOfCovD . Which of the  "Postfix"
/ "Prefix"  formats is used is decided by the global variable $CovDFormat . A number of options are possible at
definition time, concerning whether the covariant derivative has or not Torsion , Curvature  or derives FromMet−
ric , among other. The information related to these options is stored as upvalues for covd of the functions TorsionQ ,
CurvatureQ  and MetricOfCovD ,  respectively.  Another option is CurvatureRelations ,  which determines
whether the contractions of the Riemann  tensor must be replaced by the Ricci  tensor, and the contractions of Ricci
by the RicciScalar . When this option is set to False then those relations must be explicitly implemented using the
function ContractCurvature . Another option is ExtendedFrom , which allows defining a derivative acting on an
inner vbundle and whose action on the corresponding tangent vbundle is exactly that of a previously defined covariant
derivative. Finally, Levi−Civita connections can be modified to act on densities associated to a given basis, specified
through the option WeightedWithBasis , typically used through DefMetric .

All connections are assumed to be real, and so there is no need to use the Dagger  option.

As usual, there are also the options ProtectNewSymbol , Master  and Info .

� 4.5.3. The fiducial derivative

The space of covariant derivatives is an affine space, with no preferred point. It is customary, however, to choose as
origin for this space a particular but unspecified ordinary derivative. We will call it PD. It has zero torsion and zero
curvature. By convention, it is the origin for Christoffel tensors, as we will see below. These "partial derivatives" are not
automatically commuted (see below how to do it). The canonicalization process has the option CommutePDs (default
True ) to control this issue. There is no metric associated to PD by default, but the user can add it.
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� 4.5.4. Associated tensors

A number of tensors are automatically associated to each derivative: Torsion , Riemann , Ricci  and the Christof−
fel  tensor relating it to the fiducial PD. If the derivative comes from a metric then we have additionally: TFRicci ,
RicciScalar , Einstein , Weyl . If the derivative acts on an inner vbundle then the tensors FRiemann  and ACh−
ristoffel  are also automatically associated. What follows is valid for all those tensors but we use the example of
Torsion : the torsion tensor associated to a connection CD is denoted with the symbol TorsionCD and this is done by
calling the function GiveSymbol [Torsion , CD], whose behaviour can be freely chosen. We can also use Torsion [−
CD][ inds],  which is  automatically converted into GiveSymbol [Torsion ,  CD][ inds]  and hence,  by  default,  into
TorsionCD[inds].

The Christoffel  tensor is special because it is actually associated to two covariant derivatives and can be denoted as
Christoffel [CD1, CD2][ inds] (antisymmetric in the derivatives), which we call the Christoffel of CD1 from CD2.
By Christoffel [CD][ inds] we understand Christoffel [CD, PD][ inds]. The expression Christoffel [CD1,
CD2][ inds] is automatically converted into the tensor ChristoffelCD1CD2[inds] if { CD1, CD2} are sorted lexicographi−
cally or into −ChristoffelCD2CD1[inds] in the opposite case. The tensor is defined during the process if it did not exist
before. The derivative PD is always sorted last. Any Christoffel tensor (of CD1 from CD2) can be rewritten using the
function BreakChristoffel  as the sum of two Christoffel tensors, the first of CD1 from CD3 and the second of
CD3 from CD2, for any CD3 on the same manifold as CD1 and CD2.

Not any two covariant derivatives can be related via a Christoffel tensor. This is only possible if the derivatives are
"compatible" (checked with the private function CompatibleCovDsQ ): they act on the same base manifold and they
share the vbundles or at least one of them does not act on any inner vbundle.

We need several commands to change the order of derivatives acting on a tensor. The command CommuteCovDs
exchanges the order of two (equal) derivatives identified by the user through their respective indices. SortCovDs
brings the derivative operators to canonical order of their indices. Commands SortCovDsStart  and SortCovDs−
Stop  turn on and off,  respectively, the automatization of the function SortCovDs .  The canonicalization routines
commute equal covds on scalars by default, but this behaviour can be changed using $CommuteCovDsOnScalars .

There is a number of commands which change some tensors into equivalent expressions. These are: ChangeCovD
(previously known as CovDToChristoffel ), ChangeTorsion  (previously known as TorsionToChristof−
fel ), ChangeCurvature  (previously known as RiemannToChristoffel ), and the pairs RiemannToWeyl  /
WeylToRiemman ,  RicciToEinstein  /  EinsteinToRicci  and RicciToTFRicci  /  TFRicciToRicci .
When there is a metric we also have the pair ChristoffelToGradMetric  / GradMetricToChristoffel  (the
first of the pair was previously known as ChristoffelToMetric ).

Finally, there are several variables controlling convention signs: $RiemannSign , $RicciSign , $TorsionSign .
We will find some more of these later.

� 4.5.5. Dependencies

Each derivative lives on a given manifold. On objects not having that manifold as a dependency the derivative gives
zero. Checking this fact takes some time and xTensor does not do it automatically. The function CheckZeroDeriva−
tive  is in charge of that, and its action can be automatized using CheckZeroDerivativeStart  and CheckZero−
DerivativeStop . The global variable $CheckZeroDerivativeVerbose  turns on/off the messages reporting
when CheckZeroDerivative  is being used and on which object.
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� 4.6. Metrics

� 4.6.1. Type

A symbol metric with type Metric  represents a smooth 2−symmetric field living on some manifold.

Metrics are defined with DefMetric  and undefined with UndefMetric .  The syntax for definition of  metric is
DefMetric[ signdet, metric[−a, −b], covd, covdsymbols], where:

signdet gives information on the signature of the metric: it is either 0, 1, −1 or a list of integers {pluses, minuses,
zeroes}

−a, −b are covariant abstract indices on the vbundle where metric is being defined
covd is the Levi−Civita connection associated to metric, with symbols covdsymbols

The list of all currently defined metrics is stored in the global variable $Metrics . All of them have associated upval−
ues True  for the function MetricQ , which is defined as False  on any other input.

� 4.6.2. Properties and options

A metric is always defined on a given vbundle (that of its abstract indices at definition time), which is stored as an
upvalue for the function VBundleOfMetric . However, a vbundle can have several metrics (stored in the function
MetricsOfVBundle ). A vbundle with at least one metric gives True  under the function MetricEndowedQ , and
False  if it has not got any metric. If there are several metrics only the first one will be used to raise and lower indices;
all other metrics are called "frozen" and do not have all the expected properties for the first−metric. In particular, the
inverse of a frozen metric frozen[−a, −b] is not frozen[a, b] (which is actually g[a, c] g[b, d] frozen[−c, −d], with g
being the first−metric), but is defined as Invfrozen[a, b], using the head Inv .

Every metric has a unique torsionless covariant derivative, called its Levi−Civita connection and stored as an upvalue of
the metric for the function CovDOfMetric . Covariant derivatives can be or not associated to a metric, and this is
stored in the function MetricOfCovD , which returns Null  if the connection does not derive from a metric. If this
associated connection is flat then we say that the metric is flat, and this can be specified at definition time with the
Boolean option FlatMetric , whose value is stored as an upvalue for FlatMetricQ .

The only invariant information associated to a metric is its signature, defined as a list of +1’s, −1’s and 0‘s, which can be
specified at definition time as the first argument of DefMetric , and is stored as an upvalue for the function Signa−
tureOfMetric . The product of those numbers is the sign of the determinant of the metric (in any basis), and is given
by the function SignDetOfMetric .

Associated to the metric we have the epsilon  tensor, the uniquely defined (up to global constant) totally antisymmet−
ric tensor. Its global sign is given by the variable $epsilonSign . The curvature tensors associated to the metric are
actually those associated to its Levi−Civita connection (Riemann  and Ricci ). Having a metric gives us a number of
additional curvature tensors: RicciScalar , Einstein , TFRicci  and Weyl .
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� 4.6.3. Product metrics

Given a number of vbundles with their respective metrics, it is possible to define a block−form "product−metric" of
them using the syntax DefProductMetric [metric[−a, −b],  { { vbundle1,  scalar1[]}, { vbundle2,  scalar2[]}, ...  },
covd, covdsymbol], where:

metric[−a, −b] is the metric being defined, with indices on a previously defined sum−vbundle
scalar1[] is a scalar field on the base manifolds of vbundle2, ..., but not of vbundle1
covd is the Levi−Civita connection of metric
covdsymbol is the pair of symbols used for covd in StandardForm

The defined metric is, essentially,
scalar1[]^2 metric1[., .] + scalar2[]^2 metric2[., .] + ...

with metric1 being the first−metric of vbundle1, etc. The scalars are stored using the function MetricScalar . The list
of defined all product−metrics is given by the global variable $ProductMetrics  and it is always a subset of the
metrics in $Metrics .

The function ExpandProductMetric  converts objects associated to the product−metric into combinations of the
objects associated to the sub−metrics.

� 4.6.4. Induced metrics

Given a metric field g and a surface−orthogonal (see FrobeniusQ ) vector field v, it is possible to induce a metric h on
that surface. This structure can be defined using the option InducedFrom  of DefMetric . The association with the
vector field v is stored in VectorOfInducedMetric . It is only possible to associate induced metrics to the first−met−
ric of a vbundle. Induced metrics are never considered frozen metrics.

Working with induced metrics is based on the use of four objects:
− The projector onto the hypersuface. There is an inert−head acting as a formal projector, and this is constructed

using the head Projector  and the name of  the induced metric.  The projector  h[a,  −b]  can be introduce using
ProjectWith [h], and can be converted into a tensorial expression g[a, −b] − v[a] v[−b] / norm (where norm is the
norm of v in the metric g) using ProjectorToMetric  and its inverse MetricToProjector . Any tensor can be
decomposed in parts which are parallel or orthogonal to v using InducedDecomposition .

−  As with any other metric, h has an associated Levi−Civita connection, but in this case this operator is a true
derivative only when acting on tensors orthogonal to v. This connection can be expressed in terms of the connection of g
and projectors using ProjectDerivative .

− The Acceleration  vector of v. Its sign is given by a convention stored in the variable $Acceleration−
Sign .

− The extrinsic curvature of h, formed with the symbol ExtrinsicK . Its sign is given by a convention stored
in the variable $ExtrinsicKSign . It is possible to change from the extrinsic curvature tensor to derivatives of v
using the function ExtrinsicKToGradNormal  and its inverse GradNormalToExtrinsicK .

� 4.6.5. Metric contraction

Given the metric g[−a, −b] and the vector field T[b], it is customary to denote the expression g[−a, −b]T[b] as T[−a],
and the change from the former to the latter is called "contraction" in xTensor‘ . Contractions with a metric are never
automatic (compare with the automatic contraction of delta ), and are inforced using the command ContractMet−
ric . The inverse operation is implemented in SeparateMetric . When there are several metrics on the same vbun−
dle, only the first−metric can be contracted and separated. All other metrics are called "frozen".

There  are  two  options  for  ContractMetric :  OverDerivatives  and  AllowUpperDerivatives ,  with
obvious meanings.

A second form of separating metrics is using the function SetCharacters , which introduces metric factors to change
the characters of the indices of one or several tensors.
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� 4.7. Bases and charts

It is not always enough to arrive at an abstract tensor field expression. Very often we need to introduce a basis of
vectors, or even a chart, in order to get the final result of a computation. xTensor‘  has been designed as a manipulator
of abstract expressions, and therefore we need to implement bases and charts in an abstract way as well. This is imple−
mented in the companion package xCoba‘ , but the types Basis  and Chart have been already implemented here:

A symbol basis with type Basis  represents a basis of vector fields on a given vbundle. The list of all currently defined
bases is stored in the global variable $Bases . All of them have associated upvalues True  for the function BasisQ ,
which is defined as False  on any other input. The functions DefBasis  and UndefBasis  are defined in the package
xCoba‘ .

In parallel, a symbol chart with type Chart  represents a smooth chart on a given manifold. The list of all currently
defined charts is stored in the global variable $Charts . All of them have associated upvalues True  for the function
ChartQ , which is defined as False  on any other input. The functions DefChart  and UndefChart  are defined in
the package xCoba‘ .

� 4.8. Other derivatives

Apart from covariant derivatives there are other types of derivations currently supported by xTensor‘ :

Lie derivatives are denoted using the head LieD . The general syntax is LieD [ vector ][ expr ] where vector is any
tensorial expression with a single upper abstract free index. That index is not relevant except for its character and
associated vbundle; we call it an ultraindex.  Lie derivatives can be expanded using a covariant derivative with the
function LieDToCovD .

Lie brackets are denoted using the head Bracket . The general syntax is Bracket [a][vect1, vect2] where vect1 and
vect2 are two contravariant vector fields with free ultraindices. The index of the resulting vector field is a and not the
ultraindex. Lie brackets can be expanded using a covariant derivative with the function BracketToCovD .

There are two kinds of parametric derivatives in xTensor‘ , for historical reasons. The operator Mathematica builtin
OverDot  has been overloaded as a derivative with respect to an arbitrary parameter. Every tensor field is assumed to
depend on that parameter, unless stated otherwise. The recommended parametric derivative is, however, ParamD, with
syntax ParamD[par1,  par2,  ...][  expr ]  where par1, par2, ... are parameters (defined with DefParameter )  with
respect we differentiate.

A variational derivative VarD  is planned for future versions.

The command FirstDerQ  identifies single derivatives: it gives True  on expressions of the form covd[−a], LieD [v],
OverDot  or ParamD[par], and False  otherwise (in particular on multiple parametric derivatives).

A variational derivative VarD  is planned for future versions.

5. Input Expressions
Composite mathematical objects in xTensor‘ .
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� 5.1. Sum of tensors

There is no special "tensor addition" command. We use the Plus  head in Mathematica because this allows us to use
many builtins which already know how to handle Plus  (in particular the simplification algorithms). Any input expres−
sion in xTensor‘  is assumed to be a sum of terms and most algorithms are threaded over those terms in such a way
that each term is manipulated independently.

The use of Plus  is not a restriction in the sense that it has all expected properties of a sum of tensors. The only problem
might be the attribute Orderless  (implementing commutativity) because we cannot control the order in which the
terms are placed.

� 5.2. Tensor product

There is no special "tensor product" command. We use the Times  head in Mathematica because this allows us to use
many builtins which already know how to handle Times  (in particular the simplication algorithms). Any term expres−
sion in xTensor‘  is assumed to be a product of factors. A tensor product can be considered as a single tensor and
many algorithms in xTensor‘  use this idea.

The product of several tensors can be separated into monomials which do not share dummy indices. This can be done
with the function BreakInMonomials , which introduces the (inert−) head Monomial .

The use of Times  is a restriction in the sense that it is a commutative product (implemented throught its Orderless
attribute). There is no natural anticommutative product in Mathematica and xTensor‘  does not try to introduce it.
Apart from that, Times  is perfectly general because the abstract indices keep track of the structure of the expression.

� 5.3. Scalars and the Scalar head

A monomial with no free indices is a scalar field, and it is often convenient to mark scalar fields as such. We do this
using the head Scalar  (which could be, but has not been, defined as an inert−head). The main property of a Scalar
expression is that it hides the indices inside from the computations, so that xTensor‘  treats a Scalar  expression as a
block, like it would do with a truly elementary scalar field. For instance, dummy indices can be repeated across different
Scalar  expression in the same product.

To separate Scalar  expressions use the function PutScalar  (which is essentially a call to BreakInMonomials ),
and to remove the Scalar  head use NoScalar . Sometimes Scalar  expressions can be further subdivided, and this
is achieved with the function BreakScalars .

The function ScalarQ  detects scalars, that is expressions with no free indices (recall that only indices of types A and B
can be free indices; blocked indices are never free indices). An expression with head Scalar  is certainly a scalar, but
constant−symbols, parameters or any other expression without free indices are also scalars. Similar functions, detecting
expressions with just a single free index are UpVectorQ  and DownVectorQ .
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� 5.4. Inert heads

We call inert−head a symbol h such that h[expr]  has the same tensorial character as expr (same indices with same
characters, and same symmetries), even though h is not assumed to be linear in general. Such a symbol will be given
type InertHead .

Inert−heads are  defined with  DefInertHead  and  undefined with  UndefInertHead .  There  are  two particular
option at definition: LinearQ , which states whether the inert−head is linear or not (value stored as an upvalue for the
function with same name), and ContractThrough ,  which gives a list of metrics (and/or delta )  which can be
contracted through the inert−head (value stored as an upvalue for the function ContractThroughQ ). Additionally,
we have the generic options for all DefType  commands: ProtectNewSymbol , Info , Master  and PrintAs .

The list of all currently defined inert−heads is stored in the global variable $InertHeads .

Any symbol defined as an inert−head is given a True  upvalue for the function InertHeadQ , which is defined as
False  on any other input.

� 5.5. Scalar functions

In xTensor‘  there is a second way in which we can have tensors as arguments of functions: scalar functions of scalar
arguments are allowed, and they must be registered before being used. Those functions will be called scalar−functions
and their symbols will be given type ScalarFunction .

Scalar−functions are defined with DefScalarFunction  and undefined with UndefScalarFunction . There are
no particular options at definition time, apart from some of those generic for all DefType  commands: ProtectNew−
Symbol , Info , Master  and PrintAs  (the latter one is currently not in use).

A second argument at  definition time denotes the number of  arguments of  the scalar−function (default is 1).  That
number is stored as an upvalue for the function NumberOfArguments .

Scalar−functions cannot be master symbols (i.e. cannot have servants). They cannot have objects either.

The list  of  all  currently  defined scalar−functions is stored in the global  variable $ScalarFunctions ,  which is
initialized to 8Exp, Log, Sin, Cos, Tan, Csc, Sec, Cot, Power, Factorial <.

Any symbol defined as a scalar−function is given a True  upvalue for the function ScalarFunctionQ , which is
defined as False  on any other input.

There is no special formatting rules for scalar−functions.

The arguments of a scalar−function can be wrapped with the Scalar  head, but in general this is not necessary.
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� 5.6. Complex conjugation

xTensor‘  has its own complex−conjugation operator, called Dagger , to avoid overloading the Mathematica builtin
Conjugate . All input expressions have a definite behaviour under the Dagger  operation, and this is controlled using
Dagger  as an option in the DefType  commands. Possible values are Real  (usually the default), Complex , Imagi−
nary , Hermitian  and Antihermitian . Special definitions are introduced for the object being defined as specified
by the value of that option. The function DaggerQ  returns True  on expr if Dagger [expr] is different from expr.

Indices can also carry information on the complex properties of the object they belong to. Conjugation of indices is
performed by the function DaggerIndex . Tensors with equal numbers of indices on a vbundle and its conjugate can
be Hermitian . Their conjugation properties are implemented through the function TransposeDagger .

Finally, by default the conjugated symbol to a given symbol (tensor or index) is formed by adding a character to the
original  symbol.  This character  is  stored in the global  variable $DaggerCharacter ,  and initially is  the dagger
character "Ö".

� 5.7. Validation

The function Validate  checks the syntax of an expression in xTensor‘ . When doing a computation there are some
checks but not many, to save time. In those cases in which the error can be localized in a particular subexpression of the
whole  expression,  that  subexpression  is  returned  wrapped  with  the  inert−head  ERROR (printed  in  red  in
StandardForm ).

6. Rules and definitions
Rules among tensor expressions. There are two levels to consider: 1) ensuring syntactically correct rules and 2) having
flexible ways of producing rules.

� 6.1. Indicial rules

Given the simple structure of our tensor expressions, it is tempting to construct simple rules to replace tensors by other
tensor expressions. However that would inmediately produce syntactic errors, like repeated indices (see examples of this
in xTensorDoc.nb ). xTensor‘  generalizes the four main rule constructs to work with indexed expressions, with
new names having the prefix Index :

Rule IndexRule  (infix notation RightTeeArrow )
RuleDelayed IndexRuleDelayed
Set IndexSet  (infix notation DoubleRightTee )
SetDelayed IndexSetDelayed
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� 6.2. MakeRule

The function MakeRule  offers  a  large flexibility in  constructing tensor  rules and their  equivalents under  certain
changes, as controlled by its options. The syntax is either MakeRule [{ lhs, rhs}, options]  or MakeRule [{ lhs, rhs,
conditions}, options] if we want to add conditions (head Condition ) to the final rules. Possible options are:

PatternIndices : indices to be converted into patterns
TestIndices : whether vbundle of indices must be checked
MetricOn : indices on which the metric must be used
UseSymmetries : whether symmetries of tensors must be used or not
ContractMetrics : whether to contract metric factors on the rhs
Verbose : report on the internal progress

� 6.3. Automatic rules

The rules produced by MakeRule  or any other rules can be converted into permanent definitions (like those produced
by Set ) using the function AutomaticRules . This function works like the TagSet  family, deciding whether the
rule must be defined as a downvalue or an upvalue for a given symbol. If none of those is possible then the rule is
appended to the list $Rules , which must be imposed explicitly by the user.

7. Manipulation of input

� 7.1. Symmetry

Every product of tensors or tensorial expressions has a well defined symmetry under permutations of its indices, and this
can be obtained with the function SymmetryOf . For convenience, apart from the permutation group describing the
symmetry, this function returns the original expression with indices numbered, so that it is clear which indices the
permutations are referring to. For example, for a tensor Rie  with the symmetries of a Riemann tensor, the symmetry
returned by SymmetryOf  would be this expression with head Symmetry :

Symmetry @4, Rie æ1æ2æ3æ4 , 8æ1 ® G, æ2 ® F, æ3 ® D, æ4 ® K<,
StrongGenSet @81, 2, 3 <, GenSet @Cycles @81, 3 <, 82, 4 <D, -Cycles @81, 2 <D, -Cycles @83, 4 <DDDD

   
The symmetry group is written in strong generating set notation, and its permutations are written in cyclic notation. For
explanation of these and other concepts in permutation group theory see the documentation for the companion package
xPerm‘ .

The symmetry of a product of tensors is computed from the symmetries of the individual tensors (stored in Symmetry−
GroupOfTensor ) and taking into account the possibility of permuting equal subexpressions. When there are deriva−
tives involved the computation is more complicated and we need to know whether the derivatives commute, or whether
it  is  possible to  permute indices with different characters.  The options CommutePDs and ConstantMetric  of
SymmetryOf  help in controlling these points. The global variable $CommuteCovDsOnScalars  turns on and off
the commutativity of symmetric covariant derivatives on scalar fields.
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� 7.2. Canonicalization and simplification

The main part of a computer algebra system is the canonicalizer, the algorithm in chart of bringing any expression to its
canonical form. In xTensor‘  the canonicalizer is implemented in a single command, called ToCanonical , by far
the most sophisticated algorithm of the whole system. Its action is composed of three steps:

1) On a sum of terms we first apply the function SameDummies to minimize the number of different dummy
indices. Then we map ToCanonical over individual terms, such that each of them is canonicalized independently.

2) Terms (generically products of different objects) are sorted according to a number of criteria. This is done by
the function xSort . This function works in three internal steps, corresponding to three respective internal (private)
functions:

2.1) Identify : Dismantle the expression adding symbols characterizing each of its parts
2.2) MarkBlocked : mark those subexpressions with only blocked indices; they do not require canonical−

ization
2.3) ObjectSort : sorts the different parts of the expression taking into account their properties. The

global variable  $CommuteFreeIndices  controls the ordering of equivalent objects with free indices.
3) Once the term has been sorted, it can be considered as a single tensor with indices and symmetry as given by

SymmetryOf . Then we "only" have to call the algorithms for canonicalization of permutations in single and double
cosets which have been developed by R. Portugal and his collaborators. These algorithms have been encoded in the
companion package xPerm‘  and  constitute  the  hardest  part  of  the  canonicalization process.  xPerm‘  offers  two
different (but equivalent) encodings of the algorithm: a pure−Mathematica code CanonicalPerm  and a mixed−C−
Mathematica code MathLinkCanonicalPerm , which is much faster but is not available for all platforms (see the
documentation of xPerm‘  for details). Which of the two is used is chosen through the option MathLink  of ToCanon−
ical . (The name of the option comes from the fact the MathLink protocol is used the link the C and Mathematica parts
of the code.) By default ToCanonical  returns only the canonical expression, but the option GivePerm  returns both
the canonical expression and the corresponding canonical permutation. The option Notation  controls how permuta−
tions are handled internally.

Apart from those three (permutation−related), there are three more options for ToCanonical . One of them reports
information on the progress of the canonicalization process: Verbose . (There are also the options xPermVerbose
and TimeVerbose  to get information and timings on the actual permutation−canonicalization process from xPerm‘ .)
Then there is the option UseMetricOnVBundle , which gives a list of vbundles on which the metric can be used to
raise and lower the indices. The final issue is that of canonicalization of derivatives: when there is a metric and a
derivative which is not compatible with that metric, the system changes to the internal function ToCanonicalDers ,
which handles canonicalization much more carefully, but also much more slowly. That change can be avoided by
switching off the global variable $MixedDers . This new algorithm usually produces lots of Christoffel tensor because
it changes internally from the "offending" derivative to the Levi−Civita connection of the metric. It is possible to convert
automatically those Christoffel tensors into derivatives of the metric using the option ExpandChristoffel .

Finally, there is the function Simplification , which is simply a combination of ToCanonical  and then call to
Simplify .
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� 7.3. Imposing symmetries

Given an expression expr and a symmetry group G the function ImposeSymmetry [expr, inds, G] constructs the linear
combination of all index−permutations of expr corresponding to the elements of the group G applied on the indices inds
of expr, in particular taking expr to be the expression corresponding to the identity element. The result is always divided
by the order of G (the number of elements). Special derived functions for special groups of permutations are Symme−
trize , Antisymmetrize , PairSymmetrize  and PairAntisymmetrize , with obvious meanings.

We can also handle symmetry operations involving a metric: the function STFPart  returns the symmetric trace−free
part of an expression with respect to a given metric.

More ambitious, but still restricted to the case of a single vbundle, are the functions ChangeFreeIndices , which
changes the free abstract indices of an expression to those given by the user, and the function EqualExpressionsQ ,
which checks whether two expressions are the same apart from symmetries and permutations of indices.

� 7.4. Collecting terms

There are three simple functions which help in manipulating tensor expressions. These three functions are currently very
simple and will be improved in future versions:

IndexCoefficient [expr, form] returns the coefficient of form in expr.
IndexCollect [expr, form, function] imitates the action of Collect  but allowing for indexed expressions in

form.
IndexSolve [equation, tensor] solves equation for the given tensor in very simple cases: tensor has only free

indices

� 7.5. Acting on particular subexpressions

In xTensor‘  there are no special functions or arguments to act at  particular positions of  an expression. This is
because Mathematica already offers lots of different possibilities to act on arbitrary positions in different ways. See for
example the functions Map, MapAt , MapAll , MapIndexed , etc. However, it is sometimes difficult to know in which
position a given subexpression is, and for this an other similar purposes the functions ColorPositionsOfPattern
and ColorTerms  are really useful. These two have been constructed using the functionality of the great package
ExpressionManipulation‘ by David J.M. Park Jr., Ted Ersek (C) 1999−2007.

8. List of commands
ABIndexQ

AbstractIndex

AbstractIndexQ

$AbstractIndices

Acceleration

$AccelerationSign

AChristoffel

AddIndices
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AIndex

AIndexQ

AllowUpperDerivatives

Antihermitian

Antisymmetrize

AnyDependencies

AnyIndices

AutomaticRules

BaseOfVBundle

$Bases

Basis

BasisQ

BCIndexQ

BIndex

BIndexQ

Blocked

BlockedQ

Bracket

BracketToCovD

BreakChristoffel

BreakInMonomials

BreakScalars

CDIndexQ

ChangeCovD

ChangeCurvature

ChangeFreeIndices

ChangeIndex

ChangeTorsion

Chart

ChartQ

$Charts
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CheckZeroDerivative

CheckZeroDerivativeStart

CheckZeroDerivativeStop

$CheckZeroDerivativeVerbose

Christoffel

ChristoffelToGradMetric

ChristoffelToMetric

CIndex

CIndexForm

$CIndexForm

CIndexQ

CircleDot

ColorPositionsOfPattern

ColorTerms

CommuteCovDs

$CommuteCovDsOnScalars

$CommuteFreeIndices

CommutePDs

Complex

$ComputeNewDummies

ConstantMetric

ConstantQ

ConstantSymbol

ConstantSymbolQ

$ConstantSymbols

ContractCurvature

ContractDir

ContractMetric

ContractMetrics

ContractThrough

ContractThroughQ
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CovD

$CovDFormat

CovDOfMetric

CovDQ

$CovDs

CovDToChristoffel

Curvature

CurvatureQ

CurvatureRelations

Dagger

$DaggerCharacter

DaggerIndex

DaggerQ

DefAbstractIndex

DefConstantSymbol

DefCovD

DefInertHead

DefManifold

DefMetric

DefParameter

DefProductMetric

DefScalarFunction

DefTensor

DefVBundle

delta

DependenciesOf

DependenciesOfTensor

DimOfManifold

DimOfVBundle

DIndex

DIndexQ
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Dir

Disclaimer

DisjointManifoldsQ

DisorderedPairQ

DoubleRightTee

Down

DownIndex

DownIndexQ

DownVectorQ

Dummy

DummyIn

EIndexQ

Einstein

EinsteinToRicci

epsilon

$epsilonSign

EqualExpressionsQ

ERROR

ExpandChristoffel

ExpandGdelta

ExpandProductMetric

ExtendedFrom

ExtrinsicK

$ExtrinsicKSign

ExtrinsicKToGradNormal

FindAllOfType

FindBlockedIndices

FindDummyIndices

FindFreeIndices

FindIndices

$FindIndicesAcceptedHeads

xTensorRefGuide.nb 32



FirstDerQ

FlatMetric

FlatMetricQ

ForceSymmetries

Free

FRiemann

FrobeniusQ

FromMetric

Gdelta

GetIndicesOfVBundle

GIndexQ

GiveOutputString

GivePerm

GiveSymbol

GradMetricToChristoffel

GradNormalToExtrinsicK

Hermitian

HostsOf

Imaginary

ImposeSymmetry

IndexCoefficient

IndexCollect

IndexForm

IndexList

IndexOrderedQ

IndexRange

IndexRule

IndexRuleDelayed

IndexSet

IndexSetDelayed

IndexSolve
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IndexSort

IndicesOf

IndicesOfVBundle

InducedDecomposition

InducedFrom

InertHead

InertHeadQ

$InertHeads

Info

Inv

IsIndexOf

Labels

LI

LieD

LieDToCovD

LIndex

LIndexQ

LinearQ

MakeRule

Manifold

ManifoldOfCovD

ManifoldQ

$Manifolds

ManifoldsOf

Master

MasterOf

MathLink

Metric

MetricEndowedQ

MetricOfCovD

MetricOn

xTensorRefGuide.nb 34



MetricQ

$Metrics

MetricScalar

MetricsOfVBundle

MetricToProjector

$MixedDers

Monomial

NewIndexIn

NoScalar

Notation

NumberOfArguments

VisitorsOf

OrthogonalTo

OverDerivatives

OverDot

PairAntisymmetrize

PairQ

PairSymmetrize

ParamD

Parameter

ParameterQ

$Parameters

ParametersOf

PatternIndex

PatternIndices

PD

PermuteIndices

PIndex

PIndexQ

PrintAs

$ProductManifolds
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$ProductMetrics

ProjectDerivative

ProjectedWith

ProtectNewSymbol

$ProtectNewSymbols

Projector

ProjectorToMetric

ProjectWith

PutScalar

$ReadingVerbose

Real

RemoveIndices

ReplaceDummies

ReplaceIndex

Ricci

RicciScalar

$RicciSign

RicciToEinstein

RicciToTFRicci

Riemann

$RiemannSign

RiemannToChristoffel

RiemannToWeyl

RightTeeArrow

$Rules

SameDummies

Scalar

ScalarFunction

ScalarFunctionQ

$ScalarFunctions

ScalarQ
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ScreenDollarIndices

SeparateDir

SeparateMetric

ServantsOf

SetCharacters

SetIndexSortPriorities

SetOrthogonal

SignatureOfMetric

SignDetOfMetric

Simplification

SlotsOfTensor

SortCovDs

SortCovDsStart

SortCovDsStop

SplitIndex

STFPart

SubdummiesIn

SubmanifoldQ

SubmanifoldsOfManifold

SubvbundleQ

SubvbundlesOfVBundle

$SumVBundles

SupermanifoldsOfManifold

SymbolOfCovD

Symmetrize

Symmetry

SymmetryGroupOfTensor

SymmetryTableauxOfTensor

SymmetryOf

Tangent

TangentBundleOfManifold
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Tensor

TensorID

$Tensors

TestIndices

TFRicci

TFRicciToRicci

ToCanonical

Torsion

TorsionQ

$TorsionSign

TorsionToChristoffel

TraceDummy

$TraceDummyVerbose

TraceProductDummy

TransposeDagger

Undef

UndefAbstractIndex

UndefConstantSymbol

UndefCovD

UndefInertHead

UndefManifold

UndefMetric

UndefParameter

UndefScalarFunction

UndefTensor

UndefVBundle

Up

UpIndex

UpIndexQ

UpVectorQ

UseMetricOnVBundle
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UseSymmetries

Validate

ValidateSymbolInSession

VanishingQ

VarD

VBundle

VBundleQ

VBundleOfIndex

$VBundles

VBundlesOfCovD

VBundleOfMetric

VectorOfInducedMetric

Verbose

$Version

WeightedWithBasis

WeightOf

WeightOfTensor

Weyl

WeylToRiemann

$xPermVersionExpected

xSort

xTensorFormStart

xTensorFormStop

xTensorQ

Zero

9. Possible changes in the system
This is a list of possible changes I’m considering for future versions. Each of them is discussed in a different notebook.
If you have any comment or suggestion on one of those changes (either in favour or against it), please edit the corre−
sponding notebook and send it to me:

Options and their associated functions

Notations for multiple covariant derivatives
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