xTensorRefGuide.nb 1

xTensorRefGuide

José M. Martin—Garcia

IEM, CSIC, Madrid, Spain
jmm@iem.cfmac.csic.es
http://metric.iem.csic.es/Martin—Garcia/xAct/

This the Reference Guide of the packa@ensor' , now in version 0.9.5. It is a quick recollection of all commanc
the package, with their mutual relations and links to individual help pages. There are no examples: see the n
xTensorDoc.nb for an introduction to the system. There are no formulas: seaige documenkTensorMaths
for the mathematics underlying the system.

Please report errors, omissions, suggestions or comments to the author. Any kind of help is welcome!

0. Loading

The packageTensor’ is installed under the directory xAct/ containing»xact’ packages. This directory can b
installed anywhere and loaded itathematicagiving the full path of installation. However, there are two recomr
mended places for installation of add—onMiathematica
- For a single—user installation use:
- Linux: $HOME/.Mathematica/Applications/
- Windows: C:\Documents and Settings\USER\Program Data\Mathematica\Applications\
- Mac: /Users/USER/Library/Mathematica/Applications/
- For a system-wide installation use:
- Linux: /usr/share/Mathematica/Applications/
- Windows: C:\Documents and Settings\All Users\Program Data\Mathematica\Applications\
- Mac: /Library/Mathematica/Applications/
Using one of these directories there is no need to configure any path.

The loaded version ofTensor’ is contained in the global varial#&/ersion .xTensor' itself loads the package
xPerm' of manipulations of large groups of permutations. The minimum versioRasfn’ required is given by the
variable$xPermVersionExpected . The loaded version aPerm‘ is given byxPerm‘$Version

If there are error messages during the loadingTehsor' , it is possible to locate the origin of the error by settir
$ReadingVerbose=True before reading the package. By default that variable is not set.

xTensor' s free software. It is copyrighted by the author (JMM) under the General Public License (see the fil
that you should have received along with this file, and in particular the oudigatdimer(]).

xTensorRefGuide.nb 2

1. Symbols and types

m 1.1. Type information: symbols

There are three primitive types of valuesvMathematica symbols (hea&ymbol), strings (heatring) and num-
bers (headinteger , Rational , Real andComplex). Unfortunatlely it is not possible to define new primitive
types. Tensors and other types of values must be composite types. What follows in this section refers to tenso
also be applied to oth&fTensor' types of values, to be listed below.

Information inMathematicais associated to symbols only (not to strings, numbers or composite expressions as «
In xTensor* we take the following important decision: information on a tensor will be associated to a symbol ic
ing that tensor. This has two important consequences:

- Tensors are identified using symbols, and not strings.

- We cannot have two different tensors identified by the same symbol, to avoid conflicting information.
This decision has also two important advantages:

- Information on a tensor is only used Mathematicawhen the tensor appears in the expression being ev
ated.

— At any time we can collect all the information known about a tensor, rdmgnation (the? command).

There is a harsh limitation iMathematicaan expression can be associated to a symbol if and only if the symb
present in the expression at levels 0 or 1, but no deeper. This leads us to introduce a second important decisic
with some xTensor* type will always appear in the composite expression at level 0; in other words, the syr
identifying a tensor will be the head of the tensor, and so on: we shall use A[...] rather than, for example, the
natural notation Tensor[A][...] suggested by Maeder.

It could seem reasonable to use contexts to separate Tensor‘A from Manifold'A or Index‘A. This simply mean
longer names for the objects defined. We could use as well TensorA, ManifoldA, IndexA, or perhaps TenA, N
IndA. InxTensor' we do not force any particular solution, leaving the decision to the user. The only general 1
mendation is using long names for tensors (like MaxwellF for the electromagnetic Faraday tensor) and short n¢
C, etc.) for abstract indices.

It could also seem reasonable to define tensors as abstract types, instead of fixing a particular structure from
beginning. However, this would be slow for pattern matching. We shall simply try to write code having the ak
model in mind.

xTensorRefGuide.nb 3

m 1.2, Valid symbols. Attributes

Copied from theMathematicaReference Guide (A.1.2): The name of a symbol must be a sequence of letters, let
forms and digits, not starting with a digifTensor* adds a few more restrictions on the symbols that can be ust
identify tensors and so on. These restrictions are checked bytne function ValidateSymbol , called by all
DefType commands:

1. The symbol is not numeric (checked withmericQ).

2. The symbol does not have values (checkedVatheQ).

3. The symbol does not havéacked attribute.

4. The symbol is not already usedX¥ensor’ ,xPerm' ,xCore’ or ExpressionManipulation’

5. The symbol is not protected, readprotected or usédablyematica.
There is an exception to restriction 5: the capitals C, D, K, N, O are udddthgmaticabut are accepted as valid
symbols for indices and overloaded (that is, without changing their context), issuing a warning message. The «
and | are numeric and cannot be used.

Once a symbol is used to identify an object, it cannot be used to identify another object. We use th&/alitztien
SymbolinSession to check whether a symbol is currently being used or not. This function is calledafipe
commands.

All DefType commands have the optidtmotectNewSymbol , whose default value is given by the global varial
$ProtectNewSymbols (initialized to False), which allows the user to protect the defined symbol right after ¢
properties have been assigned. This is a security feature, and, if used, then any protected symbol must be ut
(with Mathematicés Unprotect) before new definitions can be associated to it.

xTensorRefGuide.nb 4

= 1.3. Type managing

As we saidxTensor' implements its own way to deal with symbol types. It is certainly nor ellegant nor efficier
it is the only way to use upvalues and keep a simple input, at the expense of harder patterns. Currently there
following 12 symbol types (the mathematical meaning of each type will be explained in detail in the following se

Symbol Type @ function Global list Definition Mesa
ConstantSymbol ConstantSymbolQ $ConstantSymbols DefConstantSymbol Constant with resp
Parameter ParameterQ $Parameters DefParameter Parametric
Manifold ManifoldQ $Manifolds DefManifold Smooth n-di
VBundle VBundleQ $VBundles DefVBundle Vector
Abstractindex AbstractindexQ $Abstractindices DefAbstractindex Index associat
Tensor xTensorQ $Tensors DefTensor Tensor field ¢
CovD CovDQ $CovDs DefCovD Connection ¢

Metric MetricQ $Metrics DefMetric Metric ter
InertHead InertHeadQ $lnertHeads DeflnertHead Wrapper fi
ScalarFunction ScalarFunctionQ $ScalarFunctions DefScalarFunction Scalar functi
Basis BasisQ $Bases DefBasis Frame of ve

Chart ChartQ $Charts DefChart Coordinate cha

Each type has an associated Q—function to identify the symbol type: each user—defined symbol has arrwgviu:
the corresponding Q—function, givirigalse on the other Q—functions. The name of the Q-function is always ct
structed appending Q to the type name (note the exceptioreakorQ , to avoid conflict withMathematic& Ten-
sorQ). The list of symbols of each type is contained in a global variable whose name is constructe® wsidgle
plural of the symbol type (note that the plural of Index is Indices, and the plural of Basis is Bases). Objects ¢
corresponding type are defined (undefined) uGeflype (UndefType) commands, wher&ype must be replacec
by the corresponding symbol type. The optiofo allows us to store some information on the type and nature o
defined symbol. The functiddndef can undefine any symbol.

Bases and charts are defined and dealt with in the companion paclatge . In particular the functionBefBasis
andDefChart are defined in there. However the type management is daxbeimgor

Given an expression, we can find all instances of a given type using the fuFintatiOfType

m 1.4. Relations among symbols

There are mathematical objects that can only be defined if other objects have already been defined before. Fc
defining a scalar field requires the previously defined manifditiwhere it lives. We shall say the symBois a

"visitor" of the symboM, which itself will be called a "host" &f. The lists of visitors associated to a symbol is giv
by the functiond/isitorsOf andHostsOf . A symbol can only be removed when the list of its visitors is empty.

Some objects are automatically defined. For example the tangent bundle of a manifold is automatically defined
manifold is defined. We say that the tangent bundle is a "servant" of the manifold, and that the manifold is the
of the tangent bundle. The list of servants associated to a symbol is given by the feectamtsOf . The master of
a symbol is given by the functidviasterOf . The master of a symbol is specified at definition time using the opt
Master of theDefType commands.

Visitors of a symbol frequently have that symbol in their own name. For instané&igthann tensor of the covarian
derivativeCD is called by defaulRiemannCD This is controlled through the functi@iveSymbol , which in that
example would be called &iveSymbol [Riemann, CD], and has explicit instructions on how to proceed in ea
case.

xTensorRefGuide.nb

2. Generalized indices

m 2.1. Introduction

xTensorRefGuide.nb 6

The main objective afTensor* is the manipulation of indexed objects. From the mathematical point of view we
always use the notation of abstract indices for abstract expressions (see Penrose & Rindler, or Wald), where t
denote the type and symmetries of a tensor, and not its components in a given frame (we use a different type
for components). This notation is very general and powerful, though sometimes cumbersome. From the comg
point of view, however, we need a more general concept of index, with several properties:

1) We define the concept géneralized indeas any expression found atiadex-slot Currently index—slots are thos
with lower case letters in

tensofa,b,c]

covda]l...]

Bracket [q][..., ...]
and the indexed arguments of the inert-heads, to be explained later, but nothing else. At those index—slots w
anything, but the system has been already trained to manipulate five types of expressions, which we now re
detail. This is called the indaype(these are logic types, not actual symbol types):

— Alndex : abstract indices: a, —b, d$101

- BIndex : basis indices: {a, polar}, {-b, —polar}

- CIndex : component indices: {0, polar}, {2, —polar}

- DIndex : directionsDir [vector]

- LIndex : labels:LI [hello]
They all giveTrue when the functiotGindexQ is applied, andralse otherwise. There is a sixth type of index, n
accepted bysIndexQ :

- PIndex : patterns with heaBlank , Pattern or PatternTest , but no other pattern head
It is possible to introduce new index types but then you would need to specify which values they have for the f
index properties (contact JMM to discuss why a new type of index is required):

2) All indices have @&haracter which can béown (covariant) or Up (contravariant) Nameless patterns like _ar
do not have a well-defined character. However, by convention, they are treated by the formatting routines a:
were contravariant. The character can be detected with the fundiidmdexQ andDownindexQ . They both always
give False on all patterns. Any index can be made contravariant using the fukigiiodex and covariant using
DownlIndex . The character of any index can be reversed @Birapngelndex .

3) Contractible indices are those which obey the Einstein convention and are detected by theHunsidp . Actual
pairs of indices are detected wRiairQ . Currently only abstract indices and basis indices belong to this special
(though in the future we might consider having non—contracted basis indices). Theystateenshich can bé-ree or
Dummy(akacontracted. Non—contractible indices are said to have sBiteked and can be detected with the
functionBlockedQ , which always gives opposite answer&todexQ .

4) Apart from those three ‘public” properties (type, character and std@)sor' uses a fourth property internally
the metric—stateof an index, saying whether an index has been moved with a metric with respect to the characi
corresponding slot at definition time.

5) To avoid index collisions we use thddthematicarecommended) method of unique variables, having indices
a$123. This is useful but produces ugly expressions. To hide away those "dollar-indices" use theStmeetitimol—-
larindices , either explicitly or by settingPrePrint or $Post .

6) Finally, we shall distinguish between indices on a complex vbundle and "conjugated indices" on the comple
gated vbundle.

As a general recommendation, manipulation of indices must be done using mathematical commands to do the
tinkering directly with the indices.

xTensorRefGuide.nb 7

m 2.2. Abstract indices

Abstract indices are labels that indicate tensorial slots (i. e. contraction with vectors or covectors). In principle v
have indices a, b, ¢, ..., contravariant indices Up[a], Up[b], Uplc], ..., and covariant indices Down[a], Down|
Downlc], ... To simplify the input/output of tensors we represent both indices and contravariant indices as a, b,
covariant indices as —a, —b, —c, ... This is the simplest choice, but the treatment of patterns becomes harder b
loose the symmetry between upindices and downindices (the former being atoms and the latter being composi
sions).

The symbol type associated to abstract indicéb&ractindex . (This is a *symbol type* and therefore an expre
sion like —a cannot have this symbol type. See below.) The list of all currently defined abstract indices is give
global variablebAbstractindices . All of them have associated upvalugsie for the functionAbstractin—
dexQ. Abstract indices are defined using the funcii@iAbstractindex and undefined usingndefAbstract—
Index . Defining an abstract index just involves checking the validity of the symbol and registering the corresg
upvalue for the Q-function. This should never be done directly by the user. These functions are made public
consistency of the symbol type management.

Do not confuse the functiobstractindexQ , which givesTrue only on symbols defined as abstract indices (i
a, b, ...), and the functiohindexQ , which givesTrue on all abstract indices(a, —b, a$125, ...).

We may consider in the future to allow for more general (composite) abstract indices, but currently this is not pt

In xTensor* abstract indices are always associated to vector bundles through the fuiBetiatieOfiIndex , which
is sort of inverse ofndicesOfVBundle . The association to manifolds is implicit through their tangent vectc
bundles.

A simple way to generate a list of abstract indices is provided by the fuhudiexRange .

m 2.3. Basis indices and component indices

Almost everything related to bases and components is done by the twin paCkdige . However, the internal
manipulation of basis indices is already prepared in advanceemmsor’ , to avoid a slow process of overloading ¢
functions when loadingCoba' . Following Schouten, Dodson & Poston, and Penrose & Rindler, basis—indices ¢
the information of the basis they belong to. This is calledrthgked indexotation. That avoids defining different
indices for different bases, but makes basis-indices a bit cumbersgrhasi§ wherea is an abstract index. There i
no type associated to basis—indices because they are always composite structures.

The functionBIndexQ checks whether a given expression is a valid basis—index. It has a second argument tc
whether the basis index belongs to a given basis or to a given vbundle.

Component indices are defined in parallel with basis indiaghdsig but a is now an integer, one of those c—numb
("c" from component and coordinate; no intended connection with Quantum Mechanics) defined with the bas
functionCindexQ checks whether a given expression is a valid component-index. It also has a second argul
check whether the component index belongs to a given basis or to a given vbundle. The ipasig {&,contravariant
and the index {1, basi§ is covariant. The integer number can be positive, negative or zero because the chara
stored as the sign of the basis, and not of the integer itself. Beware that this was different in pre—0.8 vgTs®ans
sor’

The functionBCIndexQ checks whether an index is a basis—index or a component-index. The fuxBtimexQ
checks whether an index is an abstract-index or a basis—index, currently the only two types of indices whic
contractible.

xTensorRefGuide.nb 8

m 2.4. Directional indices

Directional indices represent the mathematical notation that sees tensorial slots as slots for vectors and co\
Because it is seldom used, we want to axdidnsor’ checking continuosly if a given index is directional. Hence
introduce the heaDir to pinpoint the directional indices.

The vector argument of a directional index has its own index, which is not an index of the whole expression. T
must belong to the correct vector bundle, but the name of the index itself is irrelevant; it is some kind of dumm
we call it an ultraindex.

The functionDIndexQ checks whether a given expression is a valid directional-index. Vectors can be contrac
Dir expressions usingontractDir and separated usifBgparateDir

m 2.5. Label indices

There are indices which are not associated to vector bundles. We calabesor label-indices An example could
be thel, m labels of the spherical harmonics. Because they are used only every now and then, we denote thel
special headLl . An LI expression can have any internal structure; in particular they can have several elemen
possible to associate a character for them uslijg] and LI [a] (LI [-a] is not interpreted as a "covariant label") b
they are defined as not obeying the Einstein convention (blocked indices).

The functionLIndexQ checks whether a given expression is a valid label-index.

m 2.6. Patterns

At index-slots we can also find patterns for g—indices (even patterns for patterns). Not all patterns are allowe
those with headlank , Pattern or PatternTest . The functionPIindexQ validates the allowed patterns. The
functionPatternindex constructs patterns of the required form.

For a description of the patterns to be used in rules, see Section 6 below.

xTensorRefGuide.nb 9

m 2.7. Finding indices

All indices of an expression, including patterns, can be extracted using the flfintdémdices . This function has
attributeHoldFirst to allow it getting the indices of input expressions, before they start to evainatindices
always returns a list of indices with heladlexList , to avoid confusion with the notation for basis and compon
indices.FindIndices[0] returnsindexList[AnyIndices] . FindIindices works recursively, checking th
heads of the elements of expressions, and complaining when it finds an unknown head. New "known" heads
added to the lisfFindIndicesAcceptedHeads

When searching for the indices of a tensor, covariant derivative of a tensor or a tensor product we check that r
indices are repeated with the internal functigireckRepeated . When searching for the indices of a sum of tens
expressions, or a list, equation or rule of them, we check homogeneity of free indices with the internalGhecken
Homogeneity .

Three related functions, based Bimdindices , areFindFreelndices , FindDummylndices andFind-
BlockedIindices . They give disjoint lists of indices. The second one returns only the up—member of the pa
dummies.

A very friendly driver forFindindices isIndicesOf . The general syntax IadicesOf [selectory expi], where
selectorsare one or several of the following:

- Free : free indices

— Dummydummy indices

- Blocked : blocked indices

— Up: contravariant indices

- Down covariant indices

— Alndex : abstract indices

- BlIndex : basis indices

- ClIndex : component indices

- DIndex : directional indices

- LIndex : label indices:

- vbundle indices of the given vbundle

- basis indices of the given basis

- tensor indices on the given tensor

- covd indices on the given covariant derivative

- Basis [basig: (both) indices oBasis objects of the given basis

- Not [any of the previous]: complement of the previous
A sequence of several selectors representaitleof all selectors (smaller result). A list of several selectors repres
the Or of all selectors (bigger result).

An alternative and completely independent way of looking for indices, very useful for recursive algorithms of
contraction, is the functiolsIndexOf

m 2.8. Sorting indices

The canonicalization of an indexed object essentially entails to a reordering of the indices according to the sy
of the object and a predefined ordering for the indices. The furaiilexSort returns the preferred order for a list

indices. With the functiorsetindexSortPriorities we can decide which particular order we want to have
Possible priorities are the strings "up"/"down" “free"/'dummy"
"lexicographic"/"antilexicographic" , "positional"/"antipositional”

Simple functions derived frommdexSort arelndexOrderedQ andDisorderedPairQ

xTensorRefGuide.nb 10

m 2.9. Replacing indices

The basic function for index replacement in a generic expressRepiacelndex . Every valid index can be chang
by any other thing, not necessarily an index (though that would inmediately produce manyReplexelndex
has attributeHoldFirst . The syntax iReplacelndex [expr, ruleqd, where therules are of the formindex-
>newindex The rulea—>b and-a->-b are considered independent, and both must be specified if that is what we

Derived functions are:

- ReplaceDummies : replacement of all dummies in an expression by indices in a given list, or by n
dollar-indices. Indices belonging to different vbundles are not mixed up. In computations with intensive gener
dollar-indices the memory of the computer could be filled after a while and the global véGaliguteNewDum-
mies has been introduced to avoid this. There is also a private fuldimoveDollarindices

- SameDummies returns an expression minimizing the number of different dummies used in different te

- Permutelndices : replace indices in an expression as given by a permutation or a linear combinat
them.

- Splitindex : returns a list of expressions where a given free index has been respectively replaced b
a list of indices. This is useful to expand component ranges or to expand sums of vbundles.

— TraceDummy: converts an expression with a dummy pair into a sum of expressions with different du
pairs. Log messages can be controlled $ifhaceDummyVerbose .

3. Formatting of indexed objects

Formatting in versions 0.7and 0.8 was rather limited. Version 0.9 has introduced cut-and—-paste, but still no €
the tensor expressions. This section will be much expanded in future versions.

Most symbols ikTensor' can be formatted iBtandardForm . The output form of a symbol is a string "<output
chosen at definition time using the optiBrintAs , which defines an upvaluerintAs[symbo] ="<output>". The

value of the option can be directly the string "<output>" or a function which returns the string when applied on
Formatting of a type of objects (or of all allowed objects to be formatted) can be turned on/off using the func
xTensorFormStart| typd /xTensorFormStop[typq .

Those symbols automatically generated v@ilteSymbol have a parallel function to generate their output string
calledGiveOutputString

Indices are always formatted ifPaintAs upvalue has been given for them. Note that the formatting of indices i
given at definition time; it must be explicitly set as upvalue$fortAs

Basis and component indices are formatted using a color associated to the corresponding basis. Components
bered, but for coordinate systems it is possible to use the name of the corresponding coGidaetedrm , $Cin-
dexForm).

Covariant derivatives and their indices can be formatt&tandardForm in two possible ways, stored as values
the global variabl&CovDFormat : "Prefix" and"Postfix" , with obvious meanings. The associated symbol
be used in each of those cases are stor8giritholOfCovD for each covariant derivative.

4. Mathematical entities

Elementary mathematical objectsxifiensor’

xTensorRefGuide.nb 11

m 4.1. Constant—symbols

Symbols defined with typ€onstantSymbol represent constants with respect to all kinds of derivatives. In par
lar, they are given attributéonstant

Constant-symbols are defined wilefConstantSymbol and undefined wittundefConstantSymbol . Possible
options at definition time af®agger and those generic for all Def-commanikigo , Master , ProtectNewSym-—
bol andPrintAs

The list of all currently defined constant-symbols is stored in the global va$i@blestantSymbols

Any symbol defined as a constant—symbol is givélrie upvalue for the functio@onstantSymbolQ , which is
defined ag-alse on any other input.

A constant-symbol is a particular kind of constant. A constant is either a constant—-symbol, a humeric symbc
number. We use the functi@@onstantQ to check that something is a constant. Do not coMfisestantQ and
ConstantSymbolQ . Replacing constant—-symbols by constants is safe. For instance, there is no problem in |
rule like Mass—>2.

m 4.2. Parameters

Symbols defined with typParameter represent real parameters with some undefined range of values. Esser
they will be used as dependencies of other objects (tensors, for instance), and we will be able to take paramet
tives of expressions (s&aramD below).

Parameters are defined wiitefParameter and undefined wittundefParameter . There are no particular optiol
at definition time, apart from those generic fordlfType commandsinfo , Master , ProtectNewSymbol and
PrintAs

We do not expect parameters to be master symbols (i.e. have servants). However they can have objects, tho
which depend on the parameter. A parameter cannot be undefined if it has objects.

The list of all currently defined parameters is stored in the global vafiRlblemeters

Any symbol defined as a parameter is givefirae upvalue for the functioRarameterQ , which is defined as
False on any other output.

The parameter dependencies of a generic expression expr are obtained &apbtingtersOf onexpr. This is just a
call toDependenciesOf onexprand then a selection (usiBglect andParameterQ) of the parameters. Paran
ter dependencies of a tensor are obtained, following a parallel path, using the private RenetinatersOfTen—

sor . Note that the latter function expects a symbol (the tensor head), but the former expects a generic express

xTensorRefGuide.nb 12

= 4.3. Manifolds and vector bundles

m 4.3.1. Manifolds

A symbolmanifoldwith typeManifold represents a smooth, differentiable manifold of fixed dimension.

Manifolds are defined witlbefManifold and undefined wittundefManifold . The syntax for definition of
manifoldis
DefManifold[manifold dim, indiceg , where:

manifoldis the symbol to be defined,

dimis a nonnegative integer or a constant-symbol, and

indicesis the list of abstract indices associated to the tangent vbundle of manifold.

The list of all currently defined manifolds is stored in the global variéllenifolds . All of them have associated
upvaluesTrue for the functiorManifoldQ , which is defined aBalse on any other input.

The dimensionality of the manifold is stored as an upvalueasfifoldfor the functiorDimOfManifold . O0-dim and
1-dim manifolds have not been fully implemented yet.

m 4.3.2. Product manifolds

Given several manifolds it is possible to define their "product—manifold" structure. This is done usirDediykini—
fold , but now the second argument is a list of the (previously defined) submanifolds. The list of submanifolds

as an upvalue for the functi@ubmanifoldsOtManifold, and giveTrue when asked bgubmanifoldQ . The
list of all defined product-manifolds is stored in the global varig8BleductManifolds , Which is a subset of
$Manifolds

m 4.3.3. Dependencies

The manifold dependencies of a generic expressipnare obtained using applyildanifoldsOf onexpr. This is
just a call toDependenciesOf onexprand then a selection (usisglect andManifoldQ) of the parameters.
Manifold dependencies of a tensor are obtained, following a parallel path, using the private faaoifoidsOf-
Tensor . Note that the latter function expects a symbol (the tensor head), but the former expects a generic exp

Dependencies are specially relevant for derivatives, where it is always important to know whether a derivative
expression shares dependencies with that expression. This is computed via the DuisjciiaiVanifoldsQ

xTensorRefGuide.nb 13

m 4.3.4. Vector bundles (" vbundles")

Each manifold has an associated vbundle (its tangent bundle) with the same dimension, whose name is for
joining the symbolfangent and the name of the manifold, and which is stored as an upvalue for the f{ration
gentBundleOfManifold

However, inxTensor* it is possible to define more general ("inner") vbundles, of the type that are used in g
theories. As usual iRTensor* we only worry about local properties, and therefore all our vbundles are consic
products of an inner vector space and the base manifold. This is a new type of symbol:

A symbolvbundlewith typeVBundle represents a smooth vector bundle of fixed dimension.

Vbundles are defined withefVBundle and undefined witkundefVBundle . The syntax for definition ofbundleis
DefVBundle[vbundle manifold, dimindiceg , where:

vbundleis the symbol to be defined,

manifoldis the base manifold @bundle

dimis a nonnegative integer or a constant-symbol, the dimension of the vector space, and

indicesis the list of abstract indices associategtiandle

The list of all currently defined vbundles is stored in the global varigRundles . All of them have associated
upvaluesTrue for the functionVBundleQ , which is defined aBalse on any other input.

The dimensionality of the vbundle (that is, that of its vector space) is stored as an upvaluredtéfor the function
DimOfVBundle . 0-dim and 1-dim vbundles have not been implemented yet. The base manifold is stored
upvalue of the vbundle for the functiBaseOfVBundle .

m 4.3.5. Sum vbundles

Given several vbundles it is possible to define their "sum-vbundle" structure. This is done usiigeéigBimdle ,
but now the third argument is a list of the (previously defined) subvbundles. The list of subvbundles is stored
upvalue for the functioSubvbundlesOfVBundle , and giveTrue when asked bgubvbundleQ . The list of all
defined sum-vbundles is stored in the global variéBlemVBundles , which is a subset &VBundles .

Dummy pairs in a vbundle can be converted into sums of dummy pairs of its vbundles using the TuactiBrod—
uctDummy (with infix notationCircleDot).

m 4.3.6. Indicesand vbundles

The listindicesis stored as the first element of two in the ligticesOfVBundle . The second element will be th
list of indices internally generated when the number of registered indices in not enough. See theNendtien
dexIn . Indices can be added to the first li&td@Iindices) or removed from itRemovelndices), even though the
latter is very dangerous because previous expressions are likely to get corrupted if they contain removed indict
get any number of abstract indices using the fund&ietindicesOfVBundle . Unique (dollar-) dummy indices ce
be generated usidgummyln. A list of respective dollar-indices on the subvbundles of a vbundle can be obtaine
Subdummiesin .

xTensorRefGuide.nb 14

m 4.4, Tensors

m 4.4.1. Type

A symboltensorwith typeTensor represents a smooth tensor field living on sonamifold If manifoldis 0—dim,
thentensoris actually not a field but an algebraic object.

Tensors are defined withefTensor and undefined wittundefTensor . The syntax for definition ofensoris
DefTensor[tensofindiced, dependencigs for a tensor without symmetries anBefTensor[tensofindiced,
dependenciesymmetry in general, where:

indicesis the a sequence of abstract indices denoting the type of tensor

dependencies a list (or a single symbol) containing the manifd&tssorlives on, and/or parameters it depel
upon.

symmetryis a generating set or a strong generating set describing the symmetry properties of the tensor.

The list of all currently defined tensors is stored in the global varfii@asors . All of them have associated upvalt
True for the functionxTensorQ , which is defined aFalse on any other input. Note the difference between th
function and théMathematicabuilt—in TensorQ (new inMathematicas.0).

xTensorRefGuide.nb 15

m 4.4.2. Propertiesand options

The slot structure of the tens@l¢tsOfTensor) is stored ag-M1, M1, M2, ...} , such that the first slot is ¢
covariant index on manifold M1, the third slot is a contravariant index on M2, etc.

The listdependenciesf manifolds and/or parameters is stored as an upvakeasrfor the functiorDependencies—
OfTensor . The order in the list is irrelevant because it is overwritten using the private fuSctitbependen—
cies , which sorts parameters before manifolds, and uses lexicographic order in hdfitlsetensor has no depend:
cies then us@. A tensor is always a tensor field on the manifolds corresponding to its indices; that is, we cons
a nonscalar tensor cannot be a constant on a given manifold. This is because we need additional structure to
tensor field does not depend on that manifold (for example a vector field, in order to take Lie derivatives). The
parameter dependencies can be obtained with the private fuRaiametersOfTensor ; the list of manifold
dependencies can be obtained with the private fundMemfoldsOfTensor

Using optionWeightOfTensor (default value 0) we can define tensorial densities, defined as a linear combing
bases. The weight is stored as an upvaluerdorfor the functionWeightOfTensor . Tensor densities are repre-
sented in output using Ashtekar’s notation: weight n positive (negative) is represented adding n tildes above (t
name of the tensor. The tildes are colored according to the bases they represent. The weight of a generic ex;
computed usingVeightOf .

The symmetrydescription of the tensor is assumed to be a generating setGha&et) or a strong generating set
(headStrongGenSet) of the symmetry group of slot permutations. Simple cases can be constructed using th:
tions Symmetric , Antisymmetric and RiemannSymmetry . The information is always stored as a strong
generating set being an upvaluetefisorfor the functionSymmetryGroupOfTensor . Handling of multiterm
symmetries through Young tableaux is under development, and will be stored using the fyrotiostry Tableaux—
OfTensor . Any perm notation can be used on input, but it will always be chandgégctes notation on numeric
slots. Different slots belonging to the same orbit of the symmetry group must have the same slot structure (sal
fold and same up/down character) at definition time, but this can be overwritten using thé-opteymmetries
(default isFalse).

Under complex conjugation (witbagger) tensors can behave in four different ways. They can be

- Real (the default): the tensor is invariant under complex conjugation.

—Imaginary :the tensor changes sign under complex conjugation.

— Hermitian : the tensor is invariant under simultaneous complex conjugation of indices and exchan
indices between a vbundle and its conjugate.

— Complex : generic case.
This is given through the optiddagger and stored as an upvalueldgger for the tensor.

Apart from the usuaDefType options (nfo , Master , ProtectNewSymbol andPrintAs), there are other
options:

FrobeniusQ : not functional now

OrthogonalTo : vectors to which the tensor is orthogonal

ProjectedWith : projectors leaving the tensor invariant

TensorID : information on how to compute components

VanishingQ : if a tensor vanishes, a delayed definition of the feansof]:=0 s set.

xTensorRefGuide.nb 16

m 4.4.3. Special tensors

There are three heads with special tensorial meaning. Two of them dadtéhe and the "generalized delt&delta
tensors:

delta [a, —b] is the identity tensor on the vbundle of its indices. There is no difference between this object
delta [-b, a] and actuallydelta is defined as symmetric (though not orderless), even though its indices are a
staggered. If both its indices have the same characterdéitan is inmediately converted into the (first) metric ten:
of the vbundle of its indices. If one of its indices is a basis indexdbika is converted int®asis , which is for-
mally equivalent, but with the Orderless attribute.

Gdelta [al,...,an, —bl,...,—bhis the generalized delta tensor on any vector bundle. Its first half of indices is antis
ric, and so it is the second half, independently. The fun&igrandGdelta converts th&delta tensor into a linea
combination of products afdelta 's, as given by a determinant.

The other one has been created only for conveni@m®ee: represents the 0 tensor, for any indices.

m 4.4.4. Name generation

There are a number of tensors which are automatically defined. They are associated to other objects (vbundl
connections, etc.) and their names are constructed using the fu@tieBymbol , with syntax Give-
Symbol[tensot objeci , wheretensoris one of the following reserved words:

epsilon metric totally antisymmetric tensor covariantly constant with respect to the r

Christoffel covd Christoffel symbol associated to the connection covd and the fidRial

AChristoffel covd internal Christoffel symbol associated to the connection covd

Torsion covd torsion tensor associated to the conneatiovd

Riemann covd curvature tensor associated to the connectima

FRiemann covd internal curvature tensor associated to the connectiot

Ricci covd Ricci tensor associated to the connectiond

TFRicci metric—covd Trace-free Ricci tensor associated to the connentigtnic—covd

RicciScalar metric—covd Ricci scalar associated to the metric conneatietric—covd

Einstein metric—covd Einstein tensor associated to the metric conneatietnic—covd

Weyl metric—covd Weyl tensor associated to the metric conneatietric—covd

Projector induc—metric Projector tensor on a codimension-1 surface with induced nivedric—
metric

ExtrinsicK induc—metric Extrinsic curvature tensor of a codimension—1 surface with induce
metricinduc—metric

Acceleration vector Acceleration ofvector

The symbolChristoffel can be also associated to two different covds.

xTensorRefGuide.nb 17

m 4.5. Covariant derivatives

m 45.1. Internal format for covariant derivatives

The format for a covariant derivative@D[-a][expr] . The double pair of brackets roughly folloMathematicss
structure for derivatives[x] is represented a3erivative[1][f][X] , separating the derivative operator
Derivative[1] from the object being differentiated. However we do not want to distinguish between the diffe
tion operator D) and the internal representation for a derivatDer{vative). Nor we can separate the abstrac
object being differentiated J from the field variable or the indices (that would require a complete change of philc
in xTensor'). All this means that higher derivatives must be stored as nested derivaiMes][CD[-
b][expr]] . This is natural with respect to the multiple possible derivative operators, but has several drawbacl

1. Many pairs of brackets are needed. This is partially alleviated using the prefix nGafiea @CD[-
bl@expr .

2. Even thougiCD[-a][T[-b]] is a tensor, as well 8-b] , the notations are very different. Every func
tion acting on tensorial inputs must be prepared to receive a covariant derivative.

3. Rules forT[-a] will be replaced in derivatives df—a] . This can be considered a drawback or an adv
tage, depending on the case.

4. Because of the depth restrictiorMiathematicarules for second—-or-higher derivativesi¢fa] cannot be
upvalues forT.
This could be extended to other simpler formats in future versions if required by a large fractions of thexlisesoo

m 452 Type

A symbolcovdwith typeCovD represents a smooth connection or covariant derivative living on is@amiéold and
acting on tensor fields with indices in sorimindlehaving thamanifoldas base. Ifmanifoldis 0—dim then connectior
are not allowed. Rather than working with a single derivative operator and Christoffel symbols for different deri
we define different derivative operators for different connections, following Wald.

Covariant derivatives are defined witlefCovD and undefined wittUndefCovD . The syntax for definition ofovdis
DefCovD [covd —a], symbag] or DefCovD [covd-a], vbundle, symbglwhere:

ais an index on a tangent vbundle which identifies the manifold where the covariant derivative lives.

symbolis a list containing two strings: the first / last one gives'Hustfix" ["Prefix" output in Standarc
Form.

vbundleis the vbundle on which the covariant derivative acts. If not given it is assumed to be the (tan
vbundle of the indea.

The list of all currently defined covariant derivatives is stored in the global vafi@olDs. All of them have associ-
ated upvalue3rue for the functionCovDQ which is defined aBalse on any other input. Do not confu€®vDQ
with FirstDerQ , to be explained below.

xTensorRefGuide.nb 18

m 4.5.2. Propertiesand options

The manifold on which the connection lives is stored as an upvalgevidof the function ManifoldOfCovD . It is
currently not possible irTensorto define a parameter dependency for a connection. The libtiaflleson which the
connection acts is stored as an upvaluedwd of the functionvBundlesOfCovD (the first one is always the tange
vbundle of thamanifold) Thesymbolof covdis stored as an upvalue 8fmbolOfCovD . Which of the "Postfix"

/ "Prefix" formats is used is decided by the global varigilevDFormat . A number of options are possible a
definition time, concerning whether the covariant derivative has ofarsion , Curvature or derivescFromMet-
ric , among other. The information related to these options is stored as upvakmglfoi the functionslorsionQ
CurvatureQ andMetricOfCovD , respectively. Another option SurvatureRelations , which determines
whether the contractions of tlRReemann tensor must be replaced by Rieci tensor, and the contractionsRitci
by theRicciScalar . When this option is set to False then those relations must be explicitly implemented usi
functionContractCurvature . Another option i€xtendedFrom , which allows defining a derivative acting on
inner vbundle and whose action on the corresponding tangent vbundle is exactly that of a previously defined ¢
derivative. Finally, Levi—Civita connections can be modified to act on densities associated to a given basis, s
through the optioWeightedWithBasis , typically used througbefMetric

All connections are assumed to be real, and so there is no need tolDaggbe option.

As usual, there are also the optidhretectNewSymbol , Master andinfo

m 45.3. Thefiducial derivative

The space of covariant derivatives is an affine space, with no preferred point. It is customary, however, to ch
origin for this space a particular but unspecified ordinary derivative. We will dal.itt has zero torsion and zero
curvature. By convention, it is the origin for Christoffel tensors, as we will see below. These "partial derivatives
automatically commuted (see below how to do it). The canonicalization process has th€optinntePDs (default

True) to control this issue. There is no metric associat&Dtby default, but the user can add it.

xTensorRefGuide.nb 19

m 4.5.4. Associated tensors

A number of tensors are automatically associated to each deriviadiggon , Riemann, Ricci and theChristof-

fel tensor relating it to the fiduci&D. If the derivative comes from a metric then we have additionBiRicci ,
RicciScalar , Einstein , Weyl. If the derivative acts on an inner vbundle then the tefimmann andACh-
ristoffel are also automatically associated. What follows is valid for all those tensors but we use the exar
Torsion : the torsion tensor associated to a conned@ibris denoted with the symb@brsionCDand this is done by
calling the functiorGiveSymbol [Torsion , CD], whose behaviour can be freely chosen. We can alsbarsion [-
CDJ[indg, which is automatically converted intdiveSymbol [Torsion , CD][indg and hence, by default, into
TorsionCLQindg.

The Christoffel tensor is special because it is actually associated to two covariant derivatives and can be d
Christoffel [CD1, CDZ[indg (antisymmetric in the derivatives), which we call the ChristoffeCbfL from CD2.
By Christoffel [CD][indg we understanchristoffel [CD, PO[indg. The expressiohristoffel [CD1,
CDZ][indg is automatically converted into the ten&hristoffelCD1CD2indq if { CD1, CDZ2} are sorted lexicographi-
cally or into -ChristoffelCD2CD{indg in the opposite case. The tensor is defined during the process if it did not
before. The derivativeD is always sorted last. Any Christoffel tensor @Gid1 from CD2) can be rewritten using the
function BreakChristoffel as the sum of two Christoffel tensors, the firs€afl from CD3 and the second of
CD3from CD2, for anyCD3 on the same manifold &D1 andCD2.

Not any two covariant derivatives can be related via a Christoffel tensor. This is only possible if the derivativi
"compatible" (checked with the private functi@empatibleCovDsQ): they act on the same base manifold and tl
share the vbundles or at least one of them does not act on any inner vbundle.

We need several commands to change the order of derivatives acting on a tensor. The coonmnaumigCovDs
exchanges the order of two (equal) derivatives identified by the user through their respective SodiCesDs
brings the derivative operators to canonical order of their indices. Comi8an@vDsStart andSortCovDs—
Stop turn on and off, respectively, the automatization of the fun@omCovDs . The canonicalization routines
commute equal covds on scalars by default, but this behaviour can be chang&CusinguteCovDsOnScalars .

There is a number of commands which change some tensors into equivalent expressions. Thleapg@€ovD

(previously known a€ovDToChristoffel), ChangeTorsion (previously known a3orsionToChristof—

fel), ChangeCurvature (previously known aRiemannToChristoffel), and the pairRiemannToWeyl /
WeylToRiemman, RicciToEinstein / EinsteinToRicci andRicciToTFRicci / TFRicciToRicci
When there is a metric we also have the @GhiristoffelToGradMetric / GradMetricToChristoffel (the
first of the pair was previously known &éristoffelToMetric).

Finally, there are several variables controlling convention siREEmannSign , $RicciSign , $TorsionSign
We will find some more of these later.

m 4.5.5. Dependencies

Each derivative lives on a given manifold. On objects not having that manifold as a dependency the derivativ
zero. Checking this fact takes some time ghensordoes not do it automatically. The functiGheckZeroDeriva-
tive isin charge of that, and its action can be automatized G$iagkZeroDerivativeStart andCheckZero-
DerivativeStop . The global variabl&CheckZeroDerivativeVerbose turns on/off the messages reportit
whenCheckZeroDerivative is being used and on which object.

xTensorRefGuide.nb 20

= 4.6. Metrics

m 4.6.1. Type
A symbolmetricwith typeMetric represents a smooth 2—symmetric field living on samaeifold

Metrics are defined wittbefMetric and undefined witiundefMetric . The syntax for definition ofetric is
DefMetric[signdet, metric-a, —b], covd, covdsymbdlswhere:

signdetgives information on the signature of the metric: it is either 0, 1, —1 or a list of integers {pluses, n
zeroes}

—a, —b are covariant abstract indices on the vbundle wimeteicis being defined

covdis the Levi—Civita connection associatednetric with symbolscovdsymbols

The list of all currently defined metrics is stored in the global varigldletrics . All of them have associated upval
uesTrue for the functiorMetricQ , which is defined aBalse on any other input.

m 4.6.2. Propertiesand options

A metric is always defined on a given vbundle (that of its abstract indices at definition time), which is stored
upvalue for the functioBundleOfMetric . However, a vbundle can have several metrics (stored in the func
MetricsOfVBundle). A vbundle with at least one metric givesie under the functioMetricEndowedQ , and
False if it has not got any metric. If there are several metrics only the first one will be used to raise and lower
all other metrics are called "frozen" and do not have all the expected properties for the first—-metric. In particu
inverse of a frozen metritozerj—a, —b] is notfrozera, b] (which is actuallyg[a, d g[b, d frozeri—c, —d], with g
being the first—-metric), but is defined lasfrozelja, b, using the heathv .

Every metric has a unique torsionless covariant derivative, called its Levi—Civita connection and stored as an L
the metric for the functio@€ovDOfMetric . Covariant derivatives can be or not associated to a metric, and thi
stored in the functioMetricOfCovD , which returndNull if the connection does not derive from a metric. If thi
associated connection is flat then we say that the metric is flat, and this can be specified at definition time w
Boolean optiorFlatMetric , whose value is stored as an upvaludatMetricQ

The only invariant information associated to a metric is its signature, defined as a list of +1's, —=1's and 0's, whic
specified at definition time as the first argumenbefMetric , and is stored as an upvalue for the funcBama-
tureOfMetric . The product of those numbers is the sign of the determinant of the metric (in any basis), and
by the functiorSignDetOfMetric

Associated to the metric we have #gsilon tensor, the uniquely defined (up to global constant) totally antisym
ric tensor. Its global sign is given by the variapépsilonSign . The curvature tensors associated to the metric
actually those associated to its Levi—Civita connectitieriann andRicci). Having a metric gives us a number 1
additional curvature tensomRicciScalar , Einstein , TFRicci andWeyl.

xTensorRefGuide.nb 21

m 4.6.3. Product metrics

Given a number of vbundles with their respective metrics, it is possible to define a block—form "product-metr
them using the syntaRefProductMetric [metrid—a, -b], { { vbundlel scalar]]}, { vbundle2? scalard]}, ... },
covd covdsymbd] where:

metrid—a, —b] is the metric being defined, with indices on a previously defined sum-vbundle

scalar]] is a scalar field on the base manifolds/btindle2, .,.but not ofvbundlel

covdis the Levi—Civita connection ahetric

covdsymbois the pair of symbols used foovdin StandardForm
The defined metric is, essentially,

scalar]]*2 metricl., .] + scalard]*2 metricq., .] + ...
with metriclbeing the first—-metric ofbundlel etc. The scalars are stored using the fundfletricScalar . The list
of defined all product-metrics is given by the global varid®eoductMetrics and it is always a subset of the
metrics in$Metrics

The functionExpandProductMetric converts objects associated to the product—-metric into combinations o
objects associated to the sub—metrics.

m 4.6.4. Induced metrics

Given a metric fieldy and a surface—orthogonal (d&®beniusQ) vector fieldv, it is possible to induce a metticon
that surface. This structure can be defined using the olptilucedFrom of DefMetric . The association with the
vector fieldv is stored irvVectorOfInducedMetric . Itis only possible to associate induced metrics to the first-
ric of a vbundle. Induced metrics are never considered frozen metrics.

Working with induced metrics is based on the use of four objects:

— The projector onto the hypersuface. There is an inert—head acting as a formal projector, and this is cc
using the headProjector and the name of the induced metric. The projelsfar —b] can be introduce using
ProjectWith [h], and can be converted into a tensorial expresgi@n—b] — v[a] v[-b] / norm (wherenormis the
norm ofv in the metriag) usingProjectorToMetric and its inversd/etricToProjector . Any tensor can be
decomposed in parts which are parallel or orthogonalsinglnducedDecomposition

- As with any other metrid) has an associated Levi—Civita connection, but in this case this operator is
derivative only when acting on tensors orthogonal fbhis connection can be expressed in terms of the connectip
and projectors usingrojectDerivative

— TheAcceleration vector ofv. Its sign is given by a convention stored in the vari$bleceleration—
Sign .

— The extrinsic curvature df, formed with the symbdExtrinsicK . Its sign is given by a convention store
in the variableébExtrinsicKSign . It is possible to change from the extrinsic curvature tensor to derivatives
using the functiorextrinsicKToGradNormal and its invers&radNormalToExtrinsicK

m 4.6.5. Metric contraction

Given the metrig[—a, —b] and the vector field[b], it is customary to denote the expressypra, —b]T[b] asT[-a],
and the change from the former to the latter is called "contractioTensor’ . Contractions with a metric are nev:
automatic (compare with the automatic contractiodedfa), and are inforced using the commadahtractMet-

ric . The inverse operation is implementedsigparateMetric . When there are several metrics on the same vk
dle, only the first-metric can be contracted and separated. All other metrics are called "frozen".

There are two options fo€ontractMetric : OverDerivatives and AllowUpperDerivatives , With
obvious meanings.

A second form of separating metrics is using the fun@ietCharacters , which introduces metric factors to char
the characters of the indices of one or several tensors.

xTensorRefGuide.nb 22

m 4.7. Bases and charts

It is not always enough to arrive at an abstract tensor field expression. Very often we need to introduce a b
vectors, or even a chart, in order to get the final result of a computdafiemsor’ has been designed as a manipuli
of abstract expressions, and therefore we need to implement bases and charts in an abstract way as well. Thi
mented in the companion packadgeoba' , but the type8asis and Chart have been already implemented here:

A symbolbasiswith typeBasis represents a basis of vector fields on a given vbundle. The list of all currently d
bases is stored in the global variabBases . All of them have associated upvalugsie for the functionBasisQ |,
which is defined aFalse on any other input. The functioBefBasis andUndefBasis are defined in the packay
xCoba' .

In parallel, a symbathart with typeChart represents a smooth chart on a given manifold. The list of all currer
defined charts is stored in the global varighGharts . All of them have associated upvaluesie for the function
ChartQ , which is defined aBalse on any other input. The functiolefChart andUndefChart are defined in
the packageCoba' .

m 4.8. Other derivatives
Apart from covariant derivatives there are other types of derivations currently suppoxieehispr'

Lie derivatives are denoted using the he@D . The general syntax IdeD [vector][expr] wherevectoris any
tensorial expression with a single upper abstract free index. That index is not relevant except for its charact
associated vbundle; we call it afiraindex Lie derivatives can be expanded using a covariant derivative with t
functionLieDToCovD .

Lie brackets are denoted using the hBaacket . The general syntax Bracket [a][vect] vect] wherevectland
vect2are two contravariant vector fields with free ultraindices. The index of the resulting vector iedddsnot the
ultraindex. Lie brackets can be expanded using a covariant derivative with the fldrattéatToCovD .

There are two kinds of parametric derivativesTiensor* , for historical reasons. The operaktathematicabuiltin
OverDot has been overloaded as a derivative with respect to an arbitrary parameter. Every tensor field is as:
depend on that parameter, unless stated otherwise. The recommended parametric derivative isPhoaveienyith
syntaxParamD[parl, par2, ...][expr] whereparl, par2, ...are parameters (defined wibefParameter) with
respect we differentiate.

A variational derivativé/arD is planned for future versions.

The commandFirstDerQ identifies single derivatives: it giv83ue on expressions of the foroovd—-a], LieD [V],
OverDot or ParamD[par], andFalse otherwise (in particular on multiple parametric derivatives).

A variational derivativé/arD is planned for future versions.

5. Input Expressions

Composite mathematical objectsxifiensor*

xTensorRefGuide.nb 23

m 5.1. Sum of tensors

There is no special "tensor addition” command. We us®lihee head inMathematicabecause this allows us to ust
many builtins which already know how to hanBleis (in particular the simplification algorithms). Any input expre
sion inxTensor* is assumed to be a sum of terms and most algorithms are threaded over those terms in suc
that each term is manipulated independently.

The use oPlus is not a restriction in the sense that it has all expected properties of a sum of tensors. The only
might be the attribut©rderless (implementing commutativity) because we cannot control the order in which
terms are placed.

m 5.2. Tensor product

There is no special "tensor product" command. We usg@ithes head inMathematicabecause this allows us to us
many builtins which already know how to handlienes (in particular the simplication algorithms). Any term expre
sion inxTensor' is assumed to be a product of factors. A tensor product can be considered as a single ten:
many algorithms ixTensor* use this idea.

The product of several tensors can be separated into monomials which do not share dummy indices. This cal
with the functiorBreakinMonomials , which introduces the (inert-) helstbnomial .

The use offimes is a restriction in the sense that it is a commutative product (implemented thro@yldeitiess
attribute). There is no natural anticommutative produdflathematicaandxTensor* does not try to introduce it.
Apart from that,Times is perfectly general because the abstract indices keep track of the structure of the expre:

m 5.3. Scalars and the Scalar head

A monomial with no free indices is a scalar field, and it is often convenient to mark scalar fields as such. We
using the hea&calar (which could be, but has not been, defined as an inert—-head). The main prope3tatz#ra
expression is that it hides the indices inside from the computations, s@ émsbr’ treats éScalar expression as
block, like it would do with a truly elementary scalar field. For instance, dummy indices can be repeated across
Scalar expression in the same product.

To separat&calar expressions use the functiBatScalar (which is essentially a call BreakinMonomials),
and to remove th8calar head us®&oScalar . SometimesScalar expressions can be further subdivided, and
is achieved with the functioBreakScalars

The functionScalarQ detects scalars, that is expressions with no free indices (recall that only indices of types
can be free indices; blocked indices are never free indices). An expression witchtad is certainly a scalar, bur
constant—symbols, parameters or any other expression without free indices are also scalars. Similar functions
expressions with just a single free index dp/ectorQ andDownVectorQ .

xTensorRefGuide.nb 24

m 5.4. Inert heads

We call inert-head a symbblsuch thath[expf] has the same tensorial characteergr (same indices with same
characters, and same symmetries), even thhugmot assumed to be linear in general. Such a symbol will be gi
typelnertHead

Inert-heads are defined wibeflnertHead and undefined wittundefinertHead . There are two particular
option at definitioniinearQ , which states whether the inert-head is linear or not (value stored as an upvalue
function with same name), ar@bntractThrough , which gives a list of metrics (and/delta) which can be
contracted through the inert—head (value stored as an upvalue for the f@mtimactThroughQ). Additionally,
we have the generic options for BEfType commandsProtectNewSymbol ,Info , Master andPrintAs

The list of all currently defined inert-heads is stored in the global vaféietHeads

Any symbol defined as an inert-head is givefirae upvalue for the functiomertHeadQ , which is defined as
False on any other input.

m 5.5. Scalar functions

In xTensor* there is a second way in which we can have tensors as arguments of functions: scalar functions
arguments are allowed, and they must be registered before being used. Those functions will be called scalar-
and their symbols will be given tyf@&ealarFunction

Scalar—functions are defined witkefScalarFunction and undefined wittundefScalarFunction . There are
no particular options at definition time, apart from some of those generic pefdlype commandsProtectNew—
Symbol, Info , Master andPrintAs (the latter one is currently not in use).

A second argument at definition time denotes the number of arguments of the scalar—function (default is 1).
number is stored as an upvalue for the funddomberOfArguments

Scalar—functions cannot be master symbols (i.e. cannot have servants). They cannot have objects either.

The list of all currently defined scalar—functions is stored in the global va$&aalarFunctions , Which is
initialized to { Exp, Log, Sin, Cos, Tan, Csc, Sec, Cot, Power, Factorial }.

Any symbol defined as a scalar—function is givefirae upvalue for the functioscalarFunctionQ , which is
defined ag-alse on any other input.

There is no special formatting rules for scalar—functions.

The arguments of a scalar—function can be wrapped witBdakar head, but in general this is not necessary.

xTensorRefGuide.nb 25

m 5.6. Complex conjugation

xTensor' has its own complex—conjugation operator, caledjger , to avoid overloading th®lathematicabuiltin
Conjugate . All input expressions have a definite behaviour undebdmgger operation, and this is controlled usii
Dagger as an option in thBefType commands. Possible values Real (usually the defaultiComplex , Imagi—
nary , Hermitian andAntihermitian . Special definitions are introduced for the object being defined as spe
by the value of that option. The functiBaggerQ returnsTrue onexprif Dagger [expH is different fromexpr.

Indices can also carry information on the complex properties of the object they belong to. Conjugation of ind
performed by the functiobaggerindex . Tensors with equal numbers of indices on a vbundle and its conjugat
beHermitian . Their conjugation properties are implemented through the funtiamsposeDagger

Finally, by default the conjugated symbol to a given symbol (tensor or index) is formed by adding a charactel
original symbol. This character is stored in the global vari§blaggerCharacter , and initially is the dagger
character .

m 5.7. Validation

The functionValidate checks the syntax of an expressioxTiensor’ . When doing a computation there are so
checks but not many, to save time. In those cases in which the error can be localized in a particular subexpres
whole expression, that subexpression is returned wrapped with the inerER&@R(printed in red in
StandardForm).

6. Rules and definitions

Rules among tensor expressions. There are two levels to consider: 1) ensuring syntactically correct rules and
flexible ways of producing rules.

m 6.1. Indicial rules

Given the simple structure of our tensor expressions, it is tempting to construct simple rules to replace tensors
tensor expressions. However that would inmediately produce syntactic errors, like repeated indices (see exam
in xTensorDoc.nb). xTensor' generalizes the four main rule constructs to work with indexed expressions,
new names having the prefixdex :

Rule IndexRule (infix notationRightTeeArrow)
RuleDelayed IndexRuleDelayed
Set IndexSet (infix notationDoubleRightTee)

SetDelayed IndexSetDelayed

xTensorRefGuide.nb 26

= 6.2. MakeRule

The functionMakeRule offers a large flexibility in constructing tensor rules and their equivalents under cert:
changes, as controlled by its options. The syntax is dila&eRule [{lhs, rhg, option§ or MakeRule [{Ihs, rhs,
conditiong, optiong if we want to add conditions (he&bndition) to the final rules. Possible options are:

Patternindices > indices to be converted into patterns

Testindices : whether vbundle of indices must be checked

MetricOn : indices on which the metric must be used

UseSymmetries : whether symmetries of tensors must be used or not

ContractMetrics : whether to contract metric factors on the rhs

Verbose : report on the internal progress

m 6.3. Automatic rules

The rules produced hylakeRule or any other rules can be converted into permanent definitions (like those pro
by Set) using the functioutomaticRules . This function works like th&agSet family, deciding whether the
rule must be defined as a downvalue or an upvalue for a given symbol. If none of those is possible then the
appended to the ligiRules , which must be imposed explicitly by the user.

7. Manipulation of input

= 7.1. Symmetry

Every product of tensors or tensorial expressions has a well defined symmetry under permutations of its indice
can be obtained with the functi@ymmetryOf . For convenience, apart from the permutation group describing
symmetry, this function returns the original expression with indices numbered, so that it is clear which indice
permutations are referring to. For example, for a teRs®rwith the symmetries of a Riemann tensor, the symme
returned bySymmetryOf would be this expression with heGgmmetry :

Symmetry [4, Rie *'*%%% (@1 5 G, @2 > F, 35D, @4 K},
StrongGenSet [{1, 2,3 }, GenSet [Cycles [{1,3 3}, {2,4 }], -Cycles [{1,2 }], -Cycles [{3,4 }111]

The symmetry group is written in strong generating set notation, and its permutations are written in cyclic nota
explanation of these and other concepts in permutation group theory see the documentation for the companio
xPerm‘ .

The symmetry of a product of tensors is computed from the symmetries of the individual tensors (Symadetry—
GroupOfTensor) and taking into account the possibility of permuting equal subexpressions. When there are
tives involved the computation is more complicated and we need to know whether the derivatives commute, ol
it is possible to permute indices with different characters. The oplonemutePDs and ConstantMetric of
SymmetryOf help in controlling these points. The global varigh@mmuteCovDsOnScalars turns on and off
the commutativity of symmetric covariant derivatives on scalar fields.

xTensorRefGuide.nb 27

m 7.2. Canonicalization and simplification

The main part of a computer algebra system is the canonicalizer, the algorithm in chart of bringing any expres:
canonical form. IxTensor' the canonicalizer is implemented in a single command, ca€hnonical , by far
the most sophisticated algorithm of the whole system. Its action is composed of three steps:

1) On a sum of terms we first apply the funct®ameDummiesto minimize the number of different dumm
indices. Then we map ToCanonical over individual terms, such that each of them is canonicalized independent

2) Terms (generically products of different objects) are sorted according to a number of criteria. This is
the functionxSort . This function works in three internal steps, corresponding to three respective internal (pri
functions:

2.1)Identify : Dismantle the expression adding symbols characterizing each of its parts

2.2)MarkBlocked : mark those subexpressions with only blocked indices; they do not require ca
ization

2.3)ObjectSort : sorts the different parts of the expression taking into account their properties
global variablesCommuteFreelndices controls the ordering of equivalent objects with free indices.

3) Once the term has been sorted, it can be considered as a single tensor with indices and symmetry a
SymmetryOf . Then we "only" have to call the algorithms for canonicalization of permutations in single and d
cosets which have been developed by R. Portugal and his collaborators. These algorithms have been encod
companion packagePerm‘ and constitute the hardest part of the canonicalization prodesen‘ offers two
different (but equivalent) encodings of the algorithm: a pMi@hematicacodeCanonicalPerm and a mixed-C-
MathematicacodeMathLinkCanonicalPerm , which is much faster but is not available for all platforms (see
documentation otPerm* for details). Which of the two is used is chosen through the oltathLink of ToCanon-
ical . (The name of the option comes from the factMlaghLink protocol is used the link the C aNththematicaparts
of the code.) By defaultoCanonical returns only the canonical expression, but the ofglimePerm returns both
the canonical expression and the corresponding canonical permutation. TheNagpditton ~ controls how permuta-
tions are handled internally.

Apart from those three (permutation-related), there are three more optidreClanonical . One of them reports
information on the progress of the canonicalization prodémsiose . (There are also the optiorRBermVerbose
andTimeVerbose to get information and timings on the actual permutation—canonicalization procesdeom .)
Then there is the optiddseMetricOnVBundle , which gives a list of vbundles on which the metric can be use
raise and lower the indices. The final issue is that of canonicalization of derivatives: when there is a metric
derivative which is not compatible with that metric, the system changes to the internal flio@@mmonicalDers
which handles canonicalization much more carefully, but also much more slowly. That change can be avoid
switching off the global variabl@MixedDers . This new algorithm usually produces lots of Christoffel tensor bec
it changes internally from the "offending" derivative to the Levi—-Civita connection of the metric. It is possible to
automatically those Christoffel tensors into derivatives of the metric using the BgfiandChristoffel

Finally, there is the functioBimplification , Which is simply a combination dfoCanonical and then call to
Simplify

xTensorRefGuide.nb 28

m 7.3. Imposing symmetries

Given an expressioexprand a symmetry group the functionlmposeSymmetry [expr, inds, Gconstructs the linea
combination of all index—permutations eXpr corresponding to the elements of the gr@ugpplied on the indicaads
of expr, in particular takingxprto be the expression corresponding to the identity element. The result is always
by the order of5 (the number of elements). Special derived functions for special groups of permutatiSpsare—
trize , Antisymmetrize , PairSymmetrize andPairAntisymmetrize , With obvious meanings.

We can also handle symmetry operations involving a metric: the fur@liBRart returns the symmetric trace—fre
part of an expression with respect to a given metric.

More ambitious, but still restricted to the case of a single vbundle, are the fur@tiangeFreelndices , which
changes the free abstract indices of an expression to those given by the user, and th&fuadiopressionsQ
which checks whether two expressions are the same apart from symmetries and permutations of indices.

m 7.4, Collecting terms

There are three simple functions which help in manipulating tensor expressions. These three functions are cur
simple and will be improved in future versions:

IndexCoefficient [expr, fornj returns the coefficient dbrmin expr.

IndexCollect [expr, form, functior] imitates the action ofollect but allowing for indexed expressions
form.

IndexSolve [equation, tensdrsolvesequationfor the givertensorin very simple casesensorhas only free
indices

m 7.5. Acting on particular subexpressions

In xTensor* there are no special functions or arguments to act at particular positions of an expression. Tt
becauséviathematicaalready offers lots of different possibilities to act on arbitrary positions in different ways. S
example the function§lap, MapAt, MapAll , Mapindexed , etc. However, it is sometimes difficult to know in whi
position a given subexpression is, and for this an other similar purposes the fuGotmmPositionsOfPattern
andColorTerms are really useful. These two have been constructed using the functionality of the great par
ExpressionManipulation* by David J.M. Park Jr., Ted Ersek (C) 1999-2007.

8. List of commands

ABIl ndexQ

Abst ract | ndex
Abstract | ndexQ
$Abstract | ndi ces
Accel eration
$Accel erati onSi gn
AChri st of f el

AddI ndi ces

xTensorRefGuide.nb

28

Al ndex

Al ndexQ

Al | owUpper Deri vati ves
Antihermtian
Antisymretrize
AnyDependenci es
Anyl ndi ces

Aut omat i cRul es
BaseOf VBundl e
$Bases

Basi s

Basi sQ

BCl ndexQ

Bl ndex

Bl ndexQ

Bl ocked

Bl ockedQ

Br acket

Br acket ToCovD
BreakChristoffe
Br eakl nMonomi al s
BreakScal ar s

CDI ndexQ
ChangeCovD
ChangeCurvat ure
ChangeFr eel ndi ces
Changel ndex
ChangeTor si on
Chart

ChartQ

$Charts

xTensorRefGuide.nb

30

CheckZeroDerivative
CheckZeroDeri vativeStart
CheckZer oDeri vativeSt op
$CheckZer oDeri vati veVer bose
Chri stof fel

Christoffel ToGradMetric
Christoffel ToMetric

Cl ndex

Cl ndexFor m

$Cl ndexFor m

Cl ndexQ

Ci rcl eDot

Col or Posi ti onsCOf Patt ern
Col or Ter s

Commut eCovDs

$Conmmut eCovDsOnScal ar s
$Comut eFr eel ndi ces
Commut ePDs

Conpl ex

$Conput eNewDunmmi es
Constant Metric

Const ant Q

Const ant Synbol

Const ant Synbol Q

$Const ant Synbol s
Contract Curvature
ContractDir

Contract Metric

Contract Metrics

Cont r act Thr ough

Contract Thr oughQ

xTensorRefGuide.nb

CovD

$CovDFor mat

CovDOf Metri c
CovDQ

$CovDs

CovDToChri st of f el
Curvature

Curvat ureQ

Curvat ureRel ati ons
Dagger

$Dagger Char act er
Dagger | ndex
Dagger Q

Def Abstract | ndex
Def Const ant Synbol
Def CovD

Def | ner t Head

Def Mani f ol d

Def Metric

Def Par anet er

Def Product Metric
Def Scal ar Functi on
Def Tensor

Def VBundl e

del ta

Dependenci esCf
Dependenci esOf Tensor
Di nOf Mani f ol d

Di nOf VBundl e

Dl ndex

Dl ndexQ

xTensorRefGuide.nb

Dir

Di scl ai ner

Di sj oi nt Mani f ol dsQ
Di sor deredPai r Q
Doubl eRi ght Tee
Down

Downl ndex

Downl ndexQ
DownVect or Q

Dumy

Dumryl n

El ndexQ

Ei nstein

Ei nstei nToRi cc
epsi | on
$epsi | onSi gn
Equal Expr essi onsQ
ERROR

ExpandChri stoffe
ExpandCdel t a
ExpandPr oduct Metri c
Ext endedFr om

Ext rinsi cK

$Ext ri nsi cKSi gn
Extrinsi cKToG adNor nal
Fi ndAl' | O Type

Fi ndBl ockedI ndi ces
Fi ndDumy|l ndi ces

Fi ndFr eel ndi ces

Fi ndl ndi ces

$Fi ndl ndi cesAccept edHeads

xTensorRefGuide.nb

33

FirstDerQ

Fl at Metric

Flat MetricQ
ForceSymetries
Free

FRi emann

Fr obeni usQ
Fromwetric

Cdel ta

Get I ndi cesOf VBundl e
d ndexQ

G veQutput String

G vePerm

G veSynbol

G adMetri cToChri st of f el
G adNor mal ToExtri nsi cK
Hermitian

Host sOF

| magi nary

| nposeSynmetry

I ndexCoef fi ci ent

I ndexCol | ect

| ndexFor m

| ndexLi st

I ndexOr der edQ

| ndexRange

| ndexRul e

| ndexRul eDel ayed

| ndexSet

| ndexSet Del ayed

| ndexSol ve

xTensorRefGuide.nb

| ndexSor t

I ndi cesOFf

I ndi cesOf VBundl e
| nducedDeconposi tion
| nducedFr om

| nert Head

| nert HeadQ

$l nert Heads
Info

I nv

I sl ndexOf
Label s

LI

Li eD

Li eDToCovD

LI ndex

LI ndexQ

Li nearQ
MakeRul e

Mani f ol d

Mani f ol dOF CovD
Mani f ol dQ
$Mani f ol ds

Mani f ol dsOf
Mast er

Mast er O

Mat hLi nk
Metric

Met ri cEndowedQ
MetricOf CovD

MetricOn

xTensorRefGuide.nb

35

MetricQ

$Metrics

Metri cScal ar
MetricsOf VBundl e
Metri cToProj ect or
$M xedDer s

Mononi al

Newl ndexl n

NoScal ar

Not at i on
Nunber O Ar gunent s
VisitorsOf

Ot hogonal To

Over Derivatives
Over Dot

Pai r Anti symretrize
PairQ
PairSynmetri ze
Par anD

Par anet er

Par aneter Q

$Par anmet er s

Par anmet er sOF
Pat t er nl ndex
Pat t er nl ndi ces
PD

Per mut el ndi ces

Pl ndex

Pl ndexQ

Print As

$Pr oduct Mani f ol ds

xTensorRefGuide.nb

36

$Product Metrics
Proj ectDerivative
Proj ectedWth

Pr ot ect NewSynbol
$Pr ot ect NewSynbol s
Pr oj ect or

Proj ector ToMetric
ProjectWth

Put Scal ar

$Readi ngVer bose
Real

Renovel ndi ces

Repl aceDummi es
Repl acel ndex

Ri cci

Ri cci Scal ar

$Ri cci Sign

Ri cci ToEi nstein
Ri cci ToTFRi cci

Ri emann

$Ri emannSi gn

Ri emannToChri st of f el
Ri emannToWeyl

Ri ght TeeArrow
$Rul es

SameDunm es

Scal ar

Scal ar Functi on
Scal ar Functi onQ
$Scal ar Functi ons

Scal ar Q

xTensorRefGuide.nb

37

ScreenDol | ar | ndi ces
SeparateDir
SeparateMetric

Servant sOf

Set Char acters

Set I ndexSortPriorities
Set Ot hogonal

Si gnatureCf Metric

Si gnDet OF Metri c
Sinplification

Sl ot sOf Tensor

Sor t CovDs

Sort CovDsSt ar t

Sort CovDsSt op
Splitlndex

STFPar t

Subdumi esl n

Subrmani f ol dQ

Submani f ol dsOf Mani f ol d
Subvbundl eQ

Subvbundl esOf VBundl e
$SunvBundl es

Super mani f ol dsCf Mani f ol d
Synbol O CovD

Symmetri ze

Symmetry

Synmet r yG oupOf Tensor
Synmet r yTabl eauxXf Tensor
Synmet ryOf

Tangent

Tangent Bundl eCf Mani f ol d

xTensorRefGuide.nb

Tensor

Tensor | D

$Tensors
Test | ndi ces

TFRi cci
TFRi cci ToRi cc
ToCanoni ca

Tor si on

Tor si onQ
$Tor si onSi gn
TorsionToChristoffe
Tr aceDummy

$Tr aceDunmy Ver bose
TracePr oduct Dunmmy
Tr ansposeDagger
Undef
Undef Abst r act | ndex
Undef Const ant Synbol
Undef CovD
Undef | nert Head
Undef Mani f ol d

Undef Metric
Undef Par anet er
Undef Scal ar Functi on
Undef Tensor

Undef VBundl e

Up

Upl ndex

Upl ndexQ

UpVect or Q

UseMetri cOnVBundl e

xTensorRefGuide.nb 39

UseSynmet ri es

Val i dat e

Val i dat eSynbol | nSessi on
Vani shi ngQ

Var D

VBundl e

VBund| eQ

VBundl eOF | ndex
$VBundl es

VBundl esOf CovD

VBundl eOF Metri ¢

Vect or O | nducedMetri c
Ver bose

$Ver si on

Wi ght edW t hBasi s

Wi ght Of

Wei ght O Tensor

eyl

Weyl ToRi emann

$xPer mVer si onExpect ed
xSor t

xTensor For nfSt ar t
xTensor For nfSt op
xTensor Q

Zero

9. Possible changes in the system

This is a list of possible changes I'm considering for future versions. Each of them is discussed in a different n
If you have any comment or suggestion on one of those changes (either in favour or against it), please edit tt
sponding notebook and send it to me:

Options and their associated functions

Notations for multiple covariant derivatives

