7.1. Definition
Now we introduce metrics on the vbundles.
DefMetric Define a metric on a single vbundle
DefProductMetric Define a metric on a product vbundle
UndefMetric Undefine a metric
$Metrics List of defined metrics
$ProductMetrics List of defined product metrics
MetricQ Validate name of metric
Definition of a metric.
We define a metric metricg with negative determinant. The associated covariant derivative will be called CD and will be represented with a semicolon under IndexForm. All the needed associated tensors are defined (note that epsilon has a suffix metricg and the other tensors have a suffix CD). Because we use indices of M3 it is understood that metricg will be a metric on M3.
In[536]:=
In[537]:=
Out[537]=
In[538]:=
Out[538]//InputForm=
-RicciCD[-a, -c]
In[539]:=
Out[539]=
In[540]:=
Out[540]//InputForm=
-RicciScalarCD[]
In[541]:=
Out[541]=
In[542]:=
Out[542]=
In[543]:=
Out[543]=
In[544]:=
Out[544]=
In[545]:=
Out[545]=
Its Weyl tensor is zero because the manifold is 3d:
In[546]:=
Out[546]=
There is also the traceless part of the Ricci tensor:
In[547]:=
Out[547]=
In[548]:=
Out[548]=
Now xTensor` accepts index structures that do not correspond to the original definition, as long as they only involve defined metrics:
In[549]:=
Out[549]=
In[550]:=
Out[550]=
In[551]:=
In[552]:=
Out[552]=
In[553]:=
Out[553]=
In[554]:=
Expression of the Christoffel symbols (with respect to PD) in terms of the metric:
In[555]:=
Out[555]=
In[556]:=
Out[556]=
Created by Mathematica (May 16, 2008) | ![]() |