6.3. General Bianchi identities

Let us now check the Bianchi identities for general covariant derivatives with torsion. Note that these identities are not directly encoded in xTensor`, but can be easily computed.

Define a covariant derivative with torsion. Note the special symmetry properties of the defined tensors:

In[462]:=

DefCovD[CD[-a], {";", "▽"}, Torsion→True]

** DefCovD: Defining covariant derivative CD[-a] .

** DefTensor: Defining torsion tensor TorsionCD[a, -b, -c] .

** DefTensor: Defining non-symmetric Christoffel tensor ChristoffelCD[a, -b, -c] .

** DefTensor: Defining Riemann tensor RiemannCD[-a, -b, -c, d] . Antisymmetric only in the first pair.

** DefTensor: Defining non-symmetric Ricci tensor RicciCD[-a, -b] .

** DefCovD:  Contractions of Riemann automatically replaced by Ricci.

This is the general form of the first Bianchi identity:

In[463]:=

RiemannCD[-a, -b, -c, d] + CD[-a][ TorsionCD[d, -b, -c] ] - TorsionCD[e, -a, -b] TorsionCD[d, -c, -e]

Out[463]=

R[▽] _abc ^(   d) - T[▽] _ ( ce)^d   T[▽] _ ( ab)^e   + ▽_a^ T[▽] _ ( bc)^d  

In[464]:=

6Antisymmetrize[%, {-a, -b, -c}]

Out[464]=

The computation can be performed by transforming the derivative CD and its associated tensors into PD and Christoffel tensors:

In[465]:=

%//ChangeCovD

Out[465]=

In[466]:=

%//RiemannToChristoffel

Out[466]=

In[467]:=

%//TorsionToChristoffel

Out[467]=

In[468]:=

%//Expand

Out[468]=

0

This is the general form of the second Bianchi identity:

In[469]:=

CD[-a][ RiemannCD[-b, -c, -d, e] ] - TorsionCD[f, -a, -b] RiemannCD[-c, -f, -d, e]

Out[469]=

-R[▽] _cfd ^(   e) T[▽] _ ( ab)^f   + ▽_a^ R[▽] _bcd ^(   e)

In[470]:=

6Antisymmetrize[%, {-a, -b, -c}]

Out[470]=

The computation proceeds along the same lines:

In[471]:=

%//ChangeCovD

Out[471]=

In[472]:=

%//RiemannToChristoffel

Out[472]=

In[473]:=

%//TorsionToChristoffel

Out[473]=

In[474]:=

%//Expand

Out[474]=

In[475]:=

%//ToCanonical

Out[475]=

0

Clean up:

In[476]:=

UndefCovD[CD]

** UndefTensor: Undefined non-symmetric Christoffel tensor ChristoffelCD

** UndefTensor: Undefined non-symmetric Ricci tensor RicciCD

** UndefTensor: Undefined Riemann tensor RiemannCD

** UndefTensor: Undefined torsion tensor TorsionCD

** UndefCovD: Undefined covariant derivative CD


Created by Mathematica  (May 16, 2008) Valid XHTML 1.1!