1.3. Inner vector bundles

Starting in version 0.9, xTensor` allows the definition of vector bundles other than tangent bundles. These ``inner vbundles´´ can be real or complex, which forces the definition of the complex conjugated vbundle. Complex conjugation is controlled by the function Dagger.

DefVBundle                Define a vbundle or a sum of vbundles
UndefVBundle            Undefine a vbundle
VBundleQ                Check a vbundle
$VBundles                List of defined vbundles
$SumVBundles            List of defined sum vbundles

Definition of a vbundle.

Define a complex inner vbundle with dimension 4 (this is the fiber dimension) and base manifold M3:

In[71]:=

DefVBundle[InnerC, M3, 4, {, , ℭ, , , , , ℌ}, Dagger→Complex]

** DefVBundle: Defining vbundle InnerC.

** DefVBundle: Defining conjugated vbundle InnerC†. Assuming fixed anti-isomorphism between InnerC and InnerC†

In[72]:=

? InnerC

Global`InnerC

BaseOfVBundle[InnerC]^=M3
Dagger[InnerC]^=InnerC†
DimOfVBundle[InnerC]^=4
IndicesOfVBundle[InnerC]^={{A,B,C,D,E,F,G,H},{}}
Info[InnerC]^={vbundle,}
MetricsOfVBundle[InnerC]^={}
ObjectsOf[InnerC]^={}
PrintAs[InnerC]^=InnerC
ServantsOf[InnerC]^={InnerC†}
SubvbundlesOfVBundle[InnerC]^={}
VBundleQ[InnerC]^=True

In the process of definition, the conjugated vbundle InnerC†, with corresponding conjugated indices, has been created. It is a servant of InnerC, and hence can only be undefined through undefinition of the latter. By default, all conjugated symbols are constructed by appending the dagger character . (This character is stored in the goblal variable $DaggerCharacter, which can be changed.)

In[73]:=

? InnerC†

Global`InnerC†

BaseOfVBundle[InnerC†]^=M3
Dagger[InnerC†]^=InnerC
DimOfVBundle[InnerC†]^=4
IndicesOfVBundle[InnerC†]^={{A†,B†,C†,D†,E†,F†,G†,H†},{}}
Info[InnerC†]^={conjugated vbundle,Assuming fixed anti-isomorphism between InnerC and InnerC†}
MasterOf[InnerC†]^=InnerC
MetricsOfVBundle[InnerC†]^={}
ObjectsOf[InnerC†]^={}
PrintAs[InnerC†]^=InnerC†
SubvbundlesOfVBundle[InnerC†]^={}
VBundleQ[InnerC†]^=True

We have already defined five different vector bundles, only one of them being direct sum of others:

In[74]:=

$VBundles

Out[74]=

{TangentS2, TangentM3, TangentM5, InnerC, InnerC†}

In[75]:=

$SumVBundles

Out[75]=

{TangentM5}


Created by Mathematica  (May 16, 2008) Valid XHTML 1.1!