4.3. The determinant of the metric and the ε tensor
AbsDet Absolute value of the determinant of the metric in any given basis
epsilonToetaDown Transform an ε tensor into an etaUp tensor
epsilonToetaUp Transform an ε tensor into an etaDown tensor
etaDownToepsilon Transform an etaDown tensor into an ε tensor
etaUpToepsilon Transform an etaUp tensor into an ε tensor
$epsilonSign Global sign of the ε tensor
Determinat of the metric; relation between η and ε tensors
The determinant of the metric is a weight 2 density
In[252]:=
In[253]:=
Out[253]=
Once we have a metric, we can build new tensors (with zero weight) from the etaUp and etaDown tensors. These new ε tensors depend only on the metric
In[254]:=
Out[254]=
In[255]:=
Out[255]=
In[256]:=
Out[256]=
In[257]:=
Out[257]=
In[258]:=
Out[258]=
The global sign for ε tensors is controlled by the global variable $epsilonSign
In[259]:=
Created by Mathematica (May 16, 2008) | ![]() |