8.2. Relation with our basis
The basis is given in terms of Weyl and Ricci. We need to convert the Weyl tensors into Riemann tensors, what takes quite a long time. The results form appendix B of the first paper.
Show timings over 1 second:
In[257]:=
The function do1 performs the translation from Weyl to Riemann (do1 has a very strange form in order to make it faster). The function do2 changes to invariants and simplify them:
In[258]:=
In[260]:=
Out[260]=
Pure Ricci:
In[261]:=
Out[261]=
In[262]:=
Out[262]=
In[263]:=
Out[263]=
In[264]:=
Out[264]=
Pure Weyl:
In[265]:=
Out[265]=
In[266]:=
Out[266]=
In[267]:=
Out[267]=
In[268]:=
Out[268]=
In[269]:=
Out[269]=
In[270]:=
Out[270]=
In[271]:=
Out[271]=
Mixed invariants:
In[272]:=
Out[272]=
In[273]:=
Out[273]=
In[274]:=
Out[274]=
In[275]:=
Out[275]=
In[276]:=
Out[276]=
In[277]:=
Out[277]=
In[278]:=
Out[278]=
In[279]:=
Out[279]=
In[280]:=
Out[280]=
In[281]:=
Out[281]=
In[282]:=
Out[282]=
In[283]:=
Out[283]=
Created by Mathematica (May 16, 2008) | ![]() |